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Chapter 11
Scaling Methods and Procedures for 
the TIMSS 2003 Mathematics and 
Science Scales
Eugenio J. Gonzalez, Joseph Galia, and Isaac Li

11.1 Overview

As described in Chapter 1, the TIMSS 2003 goals of broad coverage of the 
mathematics and science curriculum and of measuring trends across assess-
ments necessitated a complex matrix-sampling booklet design,1 with indi-
vidual students responding to just a subset of the mathematics and science 
items in the assessment, and not the entire assessment item pool. Given the 
complexities of the data collection and the need to have student scores on 
the entire assessment for analysis and reporting purposes, TIMSS 2003 relied 
on Item Response Theory (IRT) scaling to describe student achievement on 
the assessment and to provide accurate measures of trends from previous 
assessments. The TIMSS IRT scaling approach used multiple imputation or 
“plausible values” methodology to obtain profi ciency scores in mathematics 
and science for all students, even though each student responded to only a 
part of the assessment item pool. To enhance the reliability of the student 
scores, the TIMSS scaling combined student responses to the items they were 
administered with information about students’ backgrounds, a process known 
as “conditioning.”

This chapter fi rst reviews the psychometric models and the condition-
ing and multiple imputation or “plausible values” methodology used in scaling 
the TIMSS 2003 data, and then describes how this approach was applied to 
the TIMSS 2003 data and to the data from the previous TIMSS 1999 and 
TIMSS 1995 studies, in order to measure trends in achievement. The TIMSS 

1 The TIMSS 2003 achievement test design is described in Chapter 2.



TIMSS & PIRLS INTERNATIONAL STUDY CENTER, LYNCH SCHOOL OF EDUCATION, BOSTON COLLEGE254

CHAPTER 11: SCALING METHODS AND PROCEDURES FOR THE TIMSS 2003 MATHEMATICS AND SCIENCE SCALES

scaling was conducted at the TIMSS & PIRLS International Study Center at 
Boston College, using software from Educational Testing Service.2

11.2 TIMSS 2003 Scaling Methodology3

The IRT scaling approach used by TIMSS was developed originally by Educa-
tional Testing Service for use in the U.S. National Assessment of Educational 
Progress. It is based on psychometric models that were fi rst used in the fi eld 
of educational measurement in the 1950s and have become popular since the 
1970s for use in large-scale surveys, test construction, and computer adap-
tive testing.4 This approach also has been used to scale IEA’s PIRLS data to 
measure progress in reading literacy.

Three distinct scaling models, depending on item type and scoring 
pro cedure, were used in the analysis of the TIMSS 2003 assessment data. 
Each is a “latent variable” model that describes the probability that a student 
will respond in a specifi c way to an item in terms of the respon dent’s profi -
ciency, which is an unobserved or “latent” trait, and various characteristics (or 
“parameters”) of the item. A three-parameter model was used with multiple-
choice items, which were scored as correct or incorrect, and a two-param-
eter model for constructed-response items with just two response options, 
which also were scored as correct or incorrect. Since each of these item types 
has just two response categories, they are known as dichotomous items. A 
partial credit model was used with polytomous constructed-response items, 
i.e., those with more than two score points. 

11.2.1 Two- and Three- Parameter IRT Models for Dichotomous Items

The fundamental equation of the three-parameter (3PL) model gives the 
probability that a person whose profi ciency on a scale k is charac terized by 
the unobservable variable θ will respond correctly to item i:
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where

xi is the response to item i is the response to item i i, 1 if correct and 0 if incorrect;

θk is the profi ciency of a person on a scale k is the profi ciency of a person on a scale k k (note that a person with k (note that a person with k
higher profi ciency has a greater probability of responding cor rectly);

2 TIMSS is indebted to Matthias Von Davier, Ed Kulick, and John Barone of Educational Testing Service for their advice and 
support.

3 This section describing the TIMSS scaling methodology has been adapted with permission from the TIMSS 1999 Techni-
cal Report (Yamamoto and Kulick, 2000).

4 For a description of IRT scaling see Birnbaum (1968); Lord and Novick (1968); Lord (1980); Van Der Linden and Hamble-
ton (1996). The theoretical underpinning of the imputed value methodology was developed by Rubin (1987), applied to 
large-scale assessment by Mislevy (1991), and studied further by Mislevy, Johnson and Muraki (1992) and Beaton and 
Johnson (1992). The procedures used in TIMSS have been used in several other large-scale surveys, including Progress 
in Reading Literacy Study (PIRLS), the U.S. National Assessment of Educational Progress (NAEP), the U.S. National Adult 
Literacy Survey (NALS), the International Adult Literacy Survey (IALS), and the International Adult Literacy and Life Skills 
Survey (IALLS).
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ai is the slope parameter of item i, characterizing its discriminating 
power;

bi is its location parameter, characterizing its diffi culty;

ci is its lower asymptote parameter, refl ecting the chances of respon-
dents of very low profi ciency selecting the correct answer.

The probability of an incorrect response to the item is defi ned as

� � � �kiiiikii PcbaxPP �� 10 1,,,|0 ����

(2)
The two-parameter (2PL) model was used for the short constructed-response 
items that were scored as correct or incorrect. The form of the 2PL model is 
the same as Equations (1) and (2) with the ci parameter fi xed at zero.i parameter fi xed at zero.i

11.2.2 The IRT Model for Polytomous Items

In TIMSS 2003, as in TIMSS 1995 and TIMSS 1999, constructed-response 
items requiring an extended response were scored for partial credit, with 
0, 1, and 2 as the possible score lev els. These polytomous items were scaled 
using a generalized partial credit model (Muraki, 1992). The fundamental 
equation of this model gives the probability that a person with profi ciency θk
on scale k will have, for the k will have, for the k i-th item, a response xi  that is scored in the l-th 
of mi  ordered score categories:
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where

mi is the number of response categories for item i is the number of response categories for item i i;

xi is the response to item i is the response to item i i, possibilities ranging between 0 and mi-1;

θk is the profi ciency of person on a scale k is the profi ciency of person on a scale k k;

ai is the slope parameter of item i is the slope parameter of item i i, characterizing its discrimination 
power;

bi is its location parameter, characterizing its diffi culty;i is its location parameter, characterizing its diffi culty;i

di,l  is category i,l  is category i,l l threshold parameter.l threshold parameter.l

Indeterminacy of model parameters of the polytomous model are resolved by 
setting di,0 =0 and setting 
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For all of the IRT models there is a linear indeterminacy between the val ues of 
item parameters and profi ciency parameters, i.e., mathematically equivalent 
but different values of item parameters can be estimated on an arbitrarily lin-
early transformed profi ciency scale. This linear indetermi nacy can be resolved 
by setting the origin and unit size of the profi ciency scale to arbitrary con-
stants, such as a mean of 500 with a standard deviation of 100, as was done 
for TIMSS in 1995. The indeterminacy is most apparent when the scale is set 
for the fi rst time.

IRT modeling relies on a number of assumptions, the most important being 
conditional independence. Under this assumption, item response probabilities 
depend only on θk (a measure of person profi ciency) and the specifi ed param-k (a measure of person profi ciency) and the specifi ed param-k
eters of the item, and are unaffected by the demo graphic characteristics or 
unique experiences of the respondents, the data collection conditions, or the 
other items presented in the test. Under this assumption, the joint probability 
of a particular response pattern x across a set of x across a set of x n items is given by:
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where Pil(θk) is of the form appropriate to the type of item (dichoto mous or 
polytomous), mi is equal to 2 for the dichotomously scored items and is equal i is equal to 2 for the dichotomously scored items and is equal i
to 3 for the polytomous items, and uil is an indicator variable defi ned byil is an indicator variable defi ned byil

�
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Replacing the hypothetical response pattern with the real scored data, the 
above function can be viewed as a likelihood function to be maxi mized by 
a given set of item parameters. In TIMSS 2003 analyses, estimates of both 
dichotomous and polytomous item parameters were obtained using the com-
mercially available Parscale software (Muracki & Bock, 1991; version 4.1). 
The item parameters for each scale were estimated independently of the 
parameters of other scales. Once items were calibrated in this manner, a likeli-
hood function for the pro fi ciency θk was induced from student responses to k was induced from student responses to k
the calibrated items. This likelihood function for the profi ciency θk is called 
the posterior distribution of the θs for each respondent.

11.2.3 Profi ciency Estimation Using Plausible Values

Most cognitive skills testing is concerned with accurately assessing the per-
formance of individual respondents for the purposes of diagnosis, selection, 
or placement. Regardless of the measurement model used, whether classical 
test theory or item response theory, the accuracy of these mea surements can 
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be improved – that is, the amount of measurement error can be reduced by 
increasing the number of items given to the indi vidual. Thus, it is common to 
see achievement tests designed to pro vide information on individual students 
that contain more than 70 items. Since the uncertainty associated with each 
θ in such tests is neg ligible, the distribution of θ or the joint distribution of θ 
with other variables can be approximated using individual θ’s. 

For the distribution of profi ciencies in large populations, however, 
more effi cient estimates can be obtained from a matrix-sampling design like 
that used in TIMSS. This design solicits relatively few responses from each 
sampled respondent while maintaining a wide range of content representation 
when responses are aggregated across all respondents. With this approach, 
however, the advantage of esti mating population characteristics more effi -
ciently is offset by the inability to make precise statements about individuals. 
The uncertainty associated with individual θ estimates becomes too large to 
be ignored. In this situation, aggregations of individual student scores can 
lead to seriously biased estimates of population characteristics (Wingersky, 
Kaplan, & Beaton, 1987).

Plausible values methodology was developed as a way to address 
this issue by using all available data to estimate directly the characteristics 
of student populations and subpopulations, and then generating multiple 
imputed scores, called plausible values, from these distributions that can be 
used in analyses with standard statistical software. A detailed review of plau-
sible values methodology is given in Mislevy (1991).

The following is a brief overview of the plausible values approach. Let 
y represent the responses of all sampled students to background ques tions or 
background data of sampled students collected from other sources, and let θ 
represent the profi ciency of interest. If θ were known for all sampled students, 
it would be possible to compute a statistic t(θ,y), such as a sample mean or 
sample percentile point, to estimate a corresponding population quantity T.

Because of the latent nature of the profi ciency, however, θ values are 
not known even for sampled respondents. The solution to this problem is 
to follow Rubin (1987) by considering θ as “missing data” and approximate 
t(θ,y) by its expectation given (x,y), the data that actually were observed, as 
follows:

� � � � yxytEyxt ,|,,* � �

� � � ��� �� dyxpyt ,|, �
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It is possible to approximate t* using random draws from the condi tional 
distribution of the scale profi ciencies given the student’s item responses xjxjx , 
the student’s background variables yjyjy , and model parame ters for the student. 
These values are referred to as imputations in the sampling literature, and 
as plausible values in large-scale surveys such as TIMSS, NAEP, NALS, and 
IALLS. The value of θ for any respondent that would enter into the com-
putation of t is thus replaced by a randomly selected value from his or her t is thus replaced by a randomly selected value from his or her t
conditional distribution. Rubin (1987) proposed repeating this process several 
times so that the uncertainly associated with imputation can be quantifi ed 
by “multiple imputation”. For example, the average of multiple estimates 
of t, each computed from a different set of plausible values, is a numerical 
approximation of t* of the above equation; the variance among them refl ects 
uncer tainty due to not observing θ. It should be noted that this variance does 
not include the variability of sampling from the population. That variability 
is estimated separately by jackknife variance estimation procedures, which 
are discussed in Chapter 12.

Note that plausible values are not test scores for individuals in the 
usual sense, but rather are imputed values that may be used to estimate 
population characteristics correctly. When the underlying model is cor rectly 
specifi ed, plausible values will provide consistent estimates of population 
characteristics, even though they are not generally unbiased estimates of the 
profi ciencies of the individuals with whom they are associated.5

Plausible values for each respondent j are drawn from the conditional j are drawn from the conditional j
distribution  ,,,| yxP �j j j , where Γ is a matrix of regression coeffi cients for 
the background variables, and Σ is a common variance matrix for residuals. 
Using standard rules of probability, the conditional probabil ity of profi ciency 
can be represented as

� � � � � � � � � ����������� ,,||,,|,,,|,,,| jjjjjjjjjjjj yPxPyPyxPyxP �����

(3)
where θjθjθ  is a vector of scale values, j is a vector of scale values, j  jjxP �,  is the product over the scales 
of the independent likelihoods induced by responses to items within each 
scale, and  ,,| jj yP �  is the multivariate joint density of profi ciencies for 
the scales, conditional on the observed value yjyjy  of background responses j of background responses j
and parameters Γ and Σ. Item parameter esti mates are fi xed and regarded as 
population values in the computations described in this section.

5 For further discussion, see Mislevy, Beaton, Kaplan, and Sheehan (1992).
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11.2.4 Conditioning

A multivariate normal distribution was assumed for  ,,| jj yP � , with a 
common variance, Σ, and with a mean given by a linear model with regres-
sion parameters, Γ. Since in large-scale studies like TIMSS there are many 
hundreds of background variables, it is customary to conduct a principal com-
ponents analysis to reduce the number to be used in Γ. Typically, components 
representing 90 percent of the variance in the data are selected. These prin-
cipal components are referred to as the condition ing variables and denoted 
as yc. The following model is then fi t to the data.

��  cy ,

where �  is normally distributed with mean zero and variance Σ. As in a 
regression analysis, Γ is a matrix each of whose columns is the effects for each Γ is a matrix each of whose columns is the effects for each Γ
scale and Σ is the matrix of residual variance between scales.

Note that in order to be strictly correct for all functions Γ of θ, it 
is nec essary that  yP |�  be correctly specifi ed for all background variables 
in the survey. Estimates of functions Γ involving background variables not 
conditioned on in this manner are subject to estimation error due to mis-
specifi cation. The nature of these errors was discussed in detail in Mislevy 
(1991). In TIMSS 2003, however, principal component scores based on nearly 
all background variables were used. Those selected variables were chosen to 
refl ect high relevance to policy and to educa tion practices. The computation 
of marginal means and percentile points of θ for these variables is nearly 
optimal.

The basic method for estimating Γ and Σ with the Expectation and 
Maximization (EM) procedure is described in Mislevy (1985) for a sin gle 
scale case. The EM algorithm requires the computation of the mean, θ, and 
variance, Σ, of the posterior distribution in equation (3).

11.2.5 Generating Profi ciency Scores

After completing the EM algorithm, plausible values for all sampled stu-
dents are drawn from the joint distribution of the values of Γ in a three-
step process. First, a value of Γ is drawn from a normal approximation to 
 jj yxP ,|,  that fi xes Σ at the value ̂   (Thomas, 1993). Second, condi-

tional on the generated value of Γ (and the fi xed value of  ˆ ), the mean 
θjθjθ , and variance ��

�
�  of the posterior distribution in equation (3), where p 

is the number of scales, are computed using the methods applied in the EM 
algorithm. In the third step, the profi ciency values are drawn independently 
from a multivari ate normal distribution with mean θjθjθ  and variance ��

�
� . 

These three steps are repeated fi ve times, producing fi ve imputations of θj θj θ
for each sam pled respondent.



TIMSS & PIRLS INTERNATIONAL STUDY CENTER, LYNCH SCHOOL OF EDUCATION, BOSTON COLLEGE260

CHAPTER 11: SCALING METHODS AND PROCEDURES FOR THE TIMSS 2003 MATHEMATICS AND SCIENCE SCALES

For respondents with an insuffi cient number of responses, the Γ and Γ and Γ Σs 
described in the previous paragraph are fi xed. Hence, all respondents - regard-
less of the number of items attempted - are assigned a set of plausible values.

The plausible values could then be employed to evaluate equation (1) 
for an arbitrary function T as follows:T as follows:T

1. Using the fi rst vector of plausible values for each respondent, eval uate T as T as T
if the plausible values were the true values of θ. Denote the result T1T1T .

2. Evaluate the sampling variance of T, or Var(T, or Var(T T1T1T ), with respect to respon-
dents’ fi rst vectors of plausible val ues.

3. Carry out steps 1 and 2 for the second through fi fth vectors of plau sible 
values, thus obtaining TuTuT  and Varu for u = 2, . . ., 5.

4. The best estimate of T obtainable from the plausible values is the average T obtainable from the plausible values is the average T
of the fi ve values obtained from the different sets of plau sible values:

5
ˆ

�
� u

uT
T

5. An estimate of the variance of T̂  is the sum of two components: an esti-

mate of Var(TuTuT ) obtained by averaging as in step 4, and the variance among 

the TuTuT s. Let 

M

Var
U u

u


, and let  
1

ˆ 2






M

TT
B u

u

M

 be the variance among 

the M plausible values. Then the fi nal estimate of the variance of T̂  is:

    MBMUTVar 11ˆ 

The fi rst component in  TVar ˆ  refl ects uncertainty due to sampling respondents 
from the population; the second refl ects uncertainty due to the fact that sampled 
respondents’ θs are not known precisely, but only indirectly through x and x and x y.

11.2.6 Working with Plausible Values

Plausible values methodology was used in TIMSS 2003 to ensure the accu-
racy of estimates of the profi ciency distributions for the TIMSS population as 
a whole and particularly for comparisons between subpopu lations. A further 
advantage of this method is that the variation between the fi ve plausible 
values generated for each respondent refl ects the uncertainty associated with 
profi ciency estimates for individual respondents. However, retaining this com-
ponent of uncertainty requires that additional analytical procedures be used 
to estimate respondents’ profi ciencies, as follows. 
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If θ values were observed for all sampled respondents, the statistic 

  21UTt   would follow a t-distribution with d degrees of freedom. Then 

the incomplete-data statistic      21ˆˆ TVarTT  is approximately t-distrib uted, 

with degrees of freedom (Johnson & Rust, 1993) given by
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where d is the degrees of freedom for the complete-data statistic, and d is the degrees of freedom for the complete-data statistic, and d Mf    is 
the proportion of total variance due to not observing θ values:

� �
� �TVar

BMf M
M ˆ

1 1��
�

When BM BM B is small relative to   U , the refer ence distribution for the incomplete-
data statistic differs little from the reference distribution for the corresponding 
complete-data statistics. If, in addition, d is large, the normal approximation d is large, the normal approximation d
can be used instead of the t-distribution.

For k-dimensional t, such as the k coeffi cients in a multiple regres-
sion analysis, each U and U and U   U  is a covariance matrix, and BM BM B  is an average of 
squares and cross-products rather than simply an average of squares. In this 
case, the quantity       TTTVarTT ˆˆˆ 1  is approximately F-distributed with 
degrees of freedom equal to k and ν, with ν defi ned as above but with a 
matrix generalization of Mf   :

� � � �� � kTVarBTraceMf MM
ˆ1 11 ���� .

For the same reason that the normal distribution can approxi mate 
the t distribution, a chi-square distribution with k degrees of freedom can be 
used in place of the F-distribution for evaluating the signifi cance of the above 
quantity       TTTVarTT ˆˆˆ 1 .

Statistics T̂ , the estimates of ability conditional on responses to cogni-
tive items and background variables, are consistent estimates of the corre-
sponding population values T, as long as background variables are included T, as long as background variables are included T
in the conditioning variables. The consequences of violat ing this restriction 
are described by Beaton & Johnson (1990), Mis levy (1991), and Mislevy & 
Sheehan (1987). To avoid such biases, the TIMSS 2003 analyses included 
nearly all background variables.
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11.3 Implementing the Scaling Procedures for the TIMSS 2003 
Assessment Data

The application of IRT scaling and plausible value methodology to the TIMSS 
2003 assessment data involved four major tasks: calibrating the achievement 
test items (estimating model parameters for each item), creating principal 
components from the questionnaire data for use in conditioning; generat-
ing IRT scale scores (profi ciency scores) for mathematics and science and 
for each of the mathematics and science content domains; and placing the 
profi ciency scale scores on the metric used to report the results from previ-
ous assessments. The TIMSS eighth-grade reporting metric was established 
by setting the average of the mean scores of the countries that participated in 
TIMSS 1995 at the eighth grade to 500 and the standard deviation to 100. To 
enable comparisons between 1999 and 1995, the TIMSS 1999 eighth-grade 
data also were placed on this metric. Placing the 2003 eighth-grade results 
on this metric permitted trend results from three points in time: 1995, 1999, 
and 2003. Since TIMSS did not collect data at the fourth grade in 1999, the 
TIMSS 2003 fourth-grade data were placed directly on the 1995 fourth-grade 
scale, providing comparisons between results from 1995 and 2003. Scale 
metrics were aligned for trend reporting only for mathematics and science 
overall; there were insuffi cient trend items from 1995 and 1999 to measure 
trends in content areas reliably.

11.3.1 Calibrating the TIMSS 2003 Test Items

As described in Chapter 2, the TIMSS 2003 achievement test design consisted 
of a total of 14 mathematics blocks and 14 science blocks at each grade, dis-
tributed across 12 student booklets. Each block contained either mathemat-
ics or science items, drawn from a range of content and cognitive domains. 
The 14 mathematics blocks were designated M01 through M14, and the 14 
science blocks S01 through S14. Each student booklet contained six blocks, 
which were chosen according to a matrix-sampling scheme that kept the 
number of booklets as few as possible while maximizing the number of times 
blocks were paired together in a booklet. Half of the booklets contained four 
mathematics blocks and two science blocks, and half four science blocks and 
two mathematics blocks. Each sampled student completed one of the twelve 
student booklets. During the testing sessions, each student responded to three 
blocks of items, took a short break, and then responded to the other three 
blocks. The booklets were distributed among the students in each sampled 
class according to a scheme that ensured comparable random samples of stu-
dents responded to each booklet.
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In line with the TIMSS assessment framework, IRT scales were con-
structed for reporting overall student achievement in mathematics and 
science, as well as for reporting separately for each of the mathematics and 
science content domains.

The fi rst step in constructing these scales was to estimate the IRT 
model item parameters for each item on each of the scales. This item cali-
bration was conducted using the commercially-available Parscale software 
(Muraki & Bock, 1991; version 4.1). Item calibration for the overall math-
ematics and science scales, which were used to measure trends from 1995 
and 1999, included data from 1995 for fourth grade and from 1999 for eighth 
grade. The calibration was conducted using a self-weighting random sample 
of 1000 students from each country’s TIMSS student sample from each assess-
ment year. This ensured that the data from each country and each assessment 
year contributed equally to the item calibration, while keeping the amount 
of data to be analyzed to a reasonable size. 

Several calibrations were conducted. At the eighth grade, to construct 
separate overall mathematics and science scales for reporting trends, as well 
as performance generally in 2003, item calibrations were conducted using 
data from the 29 countries that participated in both 1999 and 2003 assess-
ments. These calibrations each included 29,000 student records from the 
1999 assessment and 29,000 records from the 2003 assessment, for a total of 
58,000 student records. The item parameters established in these calibrations 
were used subsequently for estimating student scores for all 49 countries and 
4 benchmarking entities that participated in 2003. 

At the fourth grade, item calibrations for the overall mathematics 
and science scales for reporting trends, as well as performance generally in 
2003, were conducted using data from the 15 countries that participated in 
both 1995 and 2003 assessments. These calibrations each included 15,000 
student records from the 1999 assessment and 15,000 records from the 2003 
assessment, for a total of 30,000 student records. As for the eighth grade, the 
item parameters established in these calibrations were used subsequently for 
estimating student scores for all 26 countries and 3 benchmarking entities 
that participated in 2003.

Because there were insuffi cient items to construct reliable scales for 
measuring trends in each of the content domains, scales for these domains 
were constructed using 2003 data only. At the eighth grade, separate cali-
brations were conducted for each of the fi ve mathematics and fi ve science 
content domains. These calibrations were based on 46,000 student records, 
1,000 from each of the 46 countries that participated in the 2003 assess-
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ment.6 Similarly at the fourth grade, separate calibrations were conducted 
for each of the fi ve mathematics and three science content domains. These 
calibrations were based on 26,000 student records, 1,000 from each of the 
26 countries that participated in the 2003 assessment at the fourth grade. 
Although, because of the matrix-sampling design, not all students responded 
to every item, there were at least 2,000 student responses to each item in all 
calibrations.

All items in the TIMSS 2003 assessment were included in the item cal-
ibrations. However, a non-trivial position effect was detected during routine 
quality control checks on the data. As described in Chapter 2, TIMSS has a 
complicated booklet design, with blocks of items appearing in different posi-
tions in different booklets. For example, the items in block M1 appear as the 
fi rst block in Booklet 1, as the second block in Booklet 6, and as the third 
block in Booklet 12. This allows the booklets to be linked together effi ciently, 
but also to monitor and counterbalance any position effect. The counterbal-
anced booklet design made it possible to detect an unexpectedly strong posi-
tion effect in the data as the item statistics for each country were reviewed. 
More specifi cally, this position effect occurred because some students in all 
countries did not reach all the items in the third block position, which was 
the end of the fi rst half of each booklet before the break. The same effect was 
evident for the sixth block position, which was the last block in the booklets. 
The IRT scaling addressed this problem by treating items in the third and 
sixth block positions as if they were unique, even though they also appeared 
in other positions. For example, the mathematics items in block M1 from 
Booklet 1 (the fi rst position) and from Booklet 6 (second position) were con-
sidered to be the same items for scaling and reporting purposes, but those in 
Booklet 12 (the third position) were scaled as items that were different and 
unique. This technique is also known as “splitting” the items, or “freeing” 
the item parameters.

Exhibits D.1 through D.22 in Appendix D present the item parameters 
generated from the calibrations. Items where the parameters have been freed 
have an "F" in the second character position of the item label. As a by-product 
of the calibrations, interim scores in mathematics, science, and the content 
domains for use in constructing conditioning variables were produced.

11.3.2 Omitted and Not-Reached Responses

Apart from missing data on items that by design were not administered to a 
student, missing data could also occur because a student did not answer an 
item – whether because the student did not know the answer, omitted it by 
mistake, or did not have time to attempt the item. An item was considered 

6 Data from the four Benchmarking participants were not included in the item calibration.
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not reached when (within part 1 or part 2 of the booklet) the item itself and 
the item immediately preceding were not answered, and there were no other 
items completed in the remainder of the booklet.

In TIMSS 2003, not-reached items were treated differently in estimat-
ing item parame ters and in generating student profi ciency scores. In estimat-
ing the val ues of the item parameters, items that were considered not to have 
been reached by students, and that were located in positions 1, 2, 4, and 5 
of the test booklet, were treated as if they had not been administered. Items 
that were considered not to have been reached by the students, and that were 
located in positions 3 and 6 of the test booklet were treated as incorrect. This 
approach was considered optimal for parameter estimation. However, not-
reached items were always considered as incorrect responses when student 
profi  ciency scores were generated.

11.3.3 Evaluating Fit of IRT Models to the TIMSS 2003 Data

After the calibrations were completed, checks were performed to verify 
that the item parameters obtained from Parscale adequately reproduced the 
observed distribution of responses across the profi ciency continuum. The fi t 
of the IRT models to the TIMSS 2003 data was examined by comparing the 
theoretical item response function curves generated using the item param-
eters estimated from the data with the empirical item response functions 
calculated from the posterior distributions of the θs for each respondent that 
received the item. 

Exhibit 11.1 shows a plot of the empirical and theoretical item 
response functions for a dichotomous item. In the plot, the horizontal axis 
represents the profi ciency scale, and the vertical axis represents the prob-
ability of a correct response. Values from the theoretical curve based on the 
estimated item parameters are shown as crosses. Empirical results are repre-
sented by circles. The centers of the circles represent the empirical proportions 
correct. The plotted values are the sums of these individual posteriors at each 
point on the profi ciency scale for those students that responded correctly to 
the item, plus a fraction of the omitted responses, divided by the sum of the 
posteriors of all that were administered the item. The size of the cir cles is pro-
portional to the sum of the posteriors at each point on the profi ciency scale 
for all of those who received the item; this is related to the number of respon-
dents contributing to the estimation of that empirical proportion correct.

Exhibit 11.2 contains a plot of the empir ical and theoretical item 
response functions for a polytomous item. As for the dichotomous item plot 
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Exhibit 11.1 TIMSS 2003 Mathematics Assessment Example Response Function for a 
Dichotomous Item
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Exhibit 11.2 TIMSS 2003 Mathematics Assessment Example Response Function for a 
Polytomous Item
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above, the horizontal axis represents the profi ciency scale, but the vertical 
axis represents the probability of having a response fall in a given score cat-
egory. For polytomous items, the sums for those who scored in the category 
of interest is divided by the sum for all those that were administered the item. 
The interpretation of the circles is the same as in Exhibit 11.2.

11.3.4 Variables for Conditioning the TIMSS 2003 Data

Because there were so many background variables that could be used in con-
ditioning, TIMSS followed the practice established in other large-scale studies 
of using principal components analysis to reduce the number of variables 
while explaining most of their common variance. Principal components for 
the TIMSS 2003 background data were constructed as follows:

1. For categorical variables (questions with a small number of fi xed response 
options), a “dummy coded” variable was created for each response option, 
with a value of one if the option was chosen and zero otherwise. If a 
student omitted or was not administered a particular question, all dummy 
coded variables associated with that question were assigned the value 
zero.

2. Background variables with numerous response options (such as year of 
birth, or number of people who live in the home) were recoded using 
criterion scaling.7 This was done by replacing each response option with 
an interim achievement score. For the overall mathematics and science 
scales, the interim achievement scores were the average across the interim 
mathematics and science scores produced from the item calibration. For the 
content domain scales, the interim achievement scores from the calibra-
tion in each subject were averaged to form a composite mathematics and 
a composite science score, and the average of these composite scores was 
used as the interim achievement score.

3. Separately for each TIMSS country, all the dummy-coded and criterion-scaled 
variables were included in a principal components analysis. Those principal 
components accounting for 90 percent of the variance of the background 
variables were retained for use as conditioning variables. Because the princi-
pal components analysis was performed separately for each country, different 
numbers of principal components were required to account for 90% of the 
common variance in each country’s background variables. Exhibit 11.3 and 
Exhibit 11.4 show the total number of variables that were used in the prin-
cipal component analysis and the number of principal components selected 
to account for 90% of the background variance within each country.

7 The process of generating criterion scaled variables is described in Beaton (1969).
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In addition to the principal components, student gender (dummy 
coded), the language of the test (dummy coded), an indicator of the class-
room in the school to which the student belonged (criterion scaled), and an 
optional, country-specifi c variable (dummy coded) were included as condi-
tioning variables.

Exhibit 11.3 Number of Variables and Principal Components for Conditioning TIMSS 2003 
Fourth Grade Data

Country Sample Size
Total number of condi-

tioning variables
Total number of principal 

components only

ARM 5674 291 283

AUS 4321 301 216

BFL 4712 305 235

COT 4362 291 218

CQU 4350 291 217

CYP 4328 291 216

ENG 3585 295 179

HKG 4608 313 230

HUN 3319 307 165

IRN 4352 305 217

ITA 4282 311 214

JPN 4535 313 226

LTU 4422 290 221

LVA 3687 313 184

MAR 4263 297 213

MDA 3981 307 199

NLD 2937 289 146

NOR 4342 313 217

NZL 4308 311 215

PHL 4572 303 228

RUS 3963 305 198

SCO 3936 295 196

SGP 6668 301 333

SVN 3126 313 156

TUN 4334 311 216

TWN 4661 313 233

USA 9829 287 491

YEM 4205 313 210
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Exhibit 11.4 Number of Variables and Principal Components for Conditioning TIMSS 2003 
Eighth Grade Data

Country Sample Size
Total Number of 

Conditioning Variables
Total Number of Principal 

Components Only

ARM 5726 893 286

AUS 4791 417 225

BFL 4970 762 248

BGR 4117 913 205

BHR 4199 432 209

BSQ 2514 431 125

BWA 5150 424 248

CHL 6377 416 240

COT 4217 410 210

CQU 4411 410 220

CYP 4002 897 200

EGY 7095 418 249

ENG 2830 410 141

EST 4040 903 202

GHA 5100 410 245

HKG 4972 432 233

HUN 3302 907 165

IDN 5762 897 288

IRN 4942 424 244

ISR 4318 432 215

ITA 4278 430 213

JOR 4489 432 224

JPN 4856 426 231

KOR 5309 432 234

LBN 3814 745 190

LTU 4964 811 248

LVA 3630 679 181

MAR 3160 408 158

MDA 4033 913 201

MKD 3893 919 194

MYS 5314 412 231

NLD 3065 735 153

NOR 4133 429 206

NZL 3801 430 190

PHL 6917 422 243

PSE 5357 432 251

ROM 4104 919 205

RUS 4667 912 233

SAU 4295 426 214

SCG 4296 919 214

SCO 3516 410 175
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8 The MGROUP program was provided by ETS under contract to the TIMSS and PIRLS International Study Center at 
Boston College.

Exhibit 11.4 Number of Variables and Principal Components for Conditioning TIMSS 2003 
Eighth Grade Data (...Continued)

Country Sample Size
Total Number of 

Conditioning Variables
Total Number of Principal 

Components Only

SGP 6018 420 233

SVK 4215 912 210

SVN 3578 766 178

SWE 4256 916 212

SYR 4895 418 240

TUN 4931 410 242

TWN 5379 432 231

USA 8912 404 229

ZAF 8952 432 255

11.3.5 Generating IRT Profi ciency Scores for the TIMSS 2003 Data

Educational Testing Service’s MGROUP program (ETS, 1998; version 3.1)8

was used to generate the IRT profi ciency scores. This program takes as input 
the students’ responses to the items they were given, the item parameters 
estimated at the calibration stage, and the conditioning variables, and gener-
ates as output the plausible values that represent student profi ciency. Four 
MGROUP runs were conducted at each grade level using the 2003 assess-
ment data: one unidimensional run for the overall mathematics scale, one 
unidimensional run for the overall science scale, one multidimensional run 
for the mathematics content domain scales, and one multidimensional run 
for the science content domain scales. 

In addition to generating plausible values for the TIMSS 2003 data, 
the parameters estimated at the calibration stage also were used to generate 
plausible values on the overall mathematics and science scales using the 1999 
eighth-grade data for the 29 trend countries that participated in the TIMSS 
1999 eighth-grade assessment and the 1995 fourth-grade data for the 15 
countries that participated in the 1995 fourth-grade assessment. These plau-
sible values for the trend countries were called “bridge scores.”

Plausible values generated by the conditioning program are initially 
on the same scale as the item parameters used to estimate them. This scale 
metric is generally not useful for reporting purposes since it is somewhat 
arbitrary, ranges between approximately –3 and +3, and has a mean of zero 
across all countries. 
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11.3.6 Transforming the Mathematics and Science Scores to Measure Trends 
from 1995 and 1999

To provide results for TIMSS 2003 that would be comparable to results from 
previous TIMSS’ assessments, the 2003 profi ciency scores (plausible values) 
for overall mathematics and science had to be transformed to the metric used 
in 1995 and 1999. To accomplish this, the means and standard deviations of 
the mathematics and science “bridge scores” were made to match the means 
and standard deviations of the scores reported in the earlier assessments by 
applying the appropriate linear transformations. Once the linear transforma-
tion constants had been established, all of the mathematics and science scores 
from the 2003 assessment were transformed by applying the same linear 
transformations. This provided mathematics and science student achieve-
ment scores for the TIMS 2003 assessment that were directly comparable to 
the scores from the 1995 and 1999 assessments. 

11.3.7 Setting the Metric for the Mathematics and Science Content Domain 
Scales

As described earlier, the IRT scales for the mathematics and science content 
domains had no provision for measuring trends, and so there was no need to 
establish links to previous assessment metrics. Instead, the plausible values 
for each content domain scale were transformed to the same metric as the 
overall subject scale in 2003. For example, in eighth-grade mathematics, the 
mean and standard deviation for the number, algebra, measurement, geom-
etry, and data scales were set to have the same mean and standard deviation 
as the 2003 eighth-grade mathematics scale.
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