CHAPTER 5 The Science Curriculum

The first part of Chapter 5 presents information about the curricular goals in the timss 1999 countries, referred to as the intended curriculum. Data are provided about how the curriculum is supported and monitored within each country and the relationship between national testing and the curriculum. The second part of the chapter contains teachers' reports about the science topics actually studied in their classrooms, also known as the implemented curriculum.

In comparing achievement across countries, it is important to consider differences in students' curricular experiences and how they may affect the science they have studied. At the most fundamental level, students' opportunity to learn the content, skills, and processes tested in the timss 1999 assessment depends to a great extent on the curricular goals and intentions inherent in each country's policies for science education. Just as important as what students are expected to learn, however, is what their teachers choose to teach them. The lessons provided by the teacher ultimately determine what science students are taught.

Chapter 5 presents information about the curricular goals in the timss 1999 countries and teachers' reports about the science content studied. Teacher's instructional programs for their classes are usually guided by an "official curriculum" that describes the science education that should be provided. The official curriculum can be communicated by means of documents or statements of various sorts (often called guides, guidelines, or frameworks) prepared by the education ministry or by national or regional education departments. These documents or statements, together with supporting material such as instructional guides or mandated textbooks, are referred to as the intended curriculum.

To collect information about the intended science curriculum at the eighth grade in each of the timss 1999 countries, the National Research Coordinators responsible for implementing the study completed questionnaires and participated in interviews. As part of the process, information was gathered about factors related to supporting and monitoring the implementation of the official curriculum, including the availability of teacher training, instructional materials, assessments, and audits aligned with the curriculum.

In many cases, teachers need to interpret and modify the intended curriculum according to their perceptions of the needs and abilities of their classes, and this evolves into the implemented curriculum.
Research has shown that the implemented curriculum, even in highly regulated educational systems, is not identical to the intended curriculum. To collect data about the implemented curriculum, the science teachers of the students tested in timss 1999 completed questionnaires about whether students had been taught the various science topics covered in the test.

Science Subjects Offered Up To and Including Eighth Grade

The most striking difference among science curricula of the timss 1999 countries in eighth and earlier grades is that the sciences are taught as separate subjects in some countries and integrated to form a general science course in others. Exhibit 5.1 shows how science instruction is organized in these grades in the timss 1999 countries. By the eighth grade, Chinese Taipei, Indonesia, and most of the European countries were teaching some or all of earth science, biology, physics and chemistry as separate subjects, not necessarily contemporaneously. Elsewhere, the common practice was to integrate the sciences into a general science curriculum.

At lower grade levels, science topics in some countries were incorporated in broader curriculum areas, such as "knowledge about nature and society" in Slovenia. Additional areas of study are included in grade 8 in some countries. For instance, Belgium (Flemish) included "technological education," "scientific work," and "applied science" in grades 7 and 8 science programs.

Belgium (Flemish)	Separate Science Courses Offered	Science Subjects and Grades Taught
	No	General/integrated science course
	Yes	World orientation (3-6); biology and earth science (7-8); scientific work (7-8); technological education (7-8); physics (8); applied science (8); natural science (8)
Bulgaria	Yes	General/integrated science (3-5); biology (6-8); chemistry (7-8); physics (7-8); earth science (6-8)
Canada ${ }^{2}$	No	General sciences organized by strands (grades K-8)
Chile	No	General integrated science (4-8) with some earth science taught in history/geography/social studies
Chinese Taipei	Yes	Natural science (1-6); biology (7); integrated physics/chemistry (8); integrated physics/chemistry continues to be taught at grade 9 in addition to earth science
Czech Republic	No	General/integrated science course taught at grade 8. This course may be taught by separate subject area teachers in some schools. General science includes a combination of physics, chemistry and biology topics
	Yes	Elementary science (1-3), General/integrated science (4-5); physics (6-8); chemistry (8); life science/biology (68); earth science (6-8)
England	No	General/integrated science course, though some schools (especially independent ones) may offer physics chemistry, and biology, separately,
Finland	Yes	Integrated course of biology, geography and environmental studies (1-6); physics (7-8); chemistry (7-8) biology (7-8); natural geography (7-8); physics, chemistry, biology and natural geography are also taught at grade 9.
Hong Kong, SAR Hungary Indonesia	No	General studies (1-6); science (7-8)
	Yes	Environment (5); biology, physics, geography (6-8); chemistry (7-8)
	Yes	Biology, physics, and earth science taught separately, but one composite grade is given; chemistry is not taught until high school
Iran, Islamic Rep.	No	General/integrated science course (includes life sciences, physical sciences, earth sciences, and environmental and resource issues)
Israel	No	General/integrated science course
Italy Japan Jordan rea, Rep. of Latvia (LSS)	No	General/integrated science course
	No	General/integrated science course
	No	General/integrated science course
	No	Intelligent life (combined with social studies) (1-2); science (3-8)
	Yes	Biology (5-8); chemistry (8); physics (8)
Mithuania ${ }^{3}$	Yes	Integrated science course 'cognition of the world' (1-4); integrated science course 'man and nature' (5) integrated science course 'man and nature'/geography (6); biology/geography (7); biology, physics, chemistry and geography (8); subjects taught at grade 8 continue through grade 10
	Yes	Nature and some earth science (1-4); biology (5-8); geography (5-8); chemistry (7-8); physics (7-8)
Malaysia Moldova	No	General/integrated science course
	Yes	Separate science subjects are taught in grade 8: biology, chemistry, physics, and geography
Morocco	Yes	Biology and physics (7); physics/chemistry and biology/geology (8)
Netherlands	Yes	General/integrated science (primary school up to grade 6); physics/chemistry, biology, geography which includes earth science (7-8)
New Zealand	No	General/integrated science course
Philippines	No	General/integrated science course (1-7)
Romania Russian Federation	Yes	General/integrated science (3-4); biology (5-8); geography (5-8); physics (6-8); chemistry (7-8)
	Yes	Science integrated with social studies (2-4); integrated science (5); geography (6-8); physics (7-8); biology (68); chemistry (8)
Singapore Slovak Republic Slovenia ${ }^{3}$	No	General/integrated science course
	Yes	General/integrated science (1-4); physics, chemistry, geography/geology, and biology taught as separate subjects (5-8)
	Yes	Knowledge about nature and society (1-3); knowledge about nature (4-5); geography (6-8); biology (6-8); chemistry (7-8); physics (7-8)
South Africa	No	General/integrated science and geography
Thailand	No	General/integrated science course
Tunisia Turkey United States	No	General/integrated science course
	No	General/integrated science course (grades 4-8)
	No	General/integrated science course

[^0]
Does Decision Making About the Intended Curriculum Take Place at the National or Local Level?

Depending on the educational system, students' learning goals are commonly set at three levels: the national or regional level, the school level, and the classroom level. Some countries are highly centralized, with the ministry of education (or highest authority in the system) being exclusively responsible for the major decisions governing the direction of education. In others, such decisions are made regionally or locally. Each approach has its strengths and weaknesses. Centralized decision making can add coherence and uniformity in curriculum coverage, but may constrain a school or teacher's flexibility in tailoring instruction to the needs of students.

Exhibit 5.2 presents information for each timss 1999 country about the highest level of authority responsible for making decisions about the curriculum and gives the curriculum's current status. The data reveal that 35 of the 38 countries reported that the specifications for students' curricular goals were developed as national curricula. Australia determined curricula at the state level, with local input; the United States did so at both the state and local levels, with variability across states; and Canada determined what students are expected to learn at the provincial level.

In recent decades, it has become common for intended curricula to be updated regularly. At the time of the timss 1999 testing, the official science curriculum in 31 countries had been in place for less than a decade, and more than three-quarters of them were in revision. Of the seven countries with a science curriculum of more than 10 years' standing, four were being revised. In Australia, Canada, and the United States, curriculum change is made at the state or provincial level, and some science curricula were in revision at the time of testing. The science curricula in these three countries were relatively recent, having been developed within ten years prior to the study.

	National or Regional Curriculum	Year Curriculum Introduced	Status of Curriculum
Australia	Regional \& Local	1984-1999	In revision (in 4 states/territories); As introduced (in 4 states/territories)
Belgium (Flemish) ${ }^{1}$	National	1989-1999	As introduced
Bulgaria	National	1989 (biology and chemistry); 1996 (physics); 1995 (earth science)	In revision
Canada	Regional	1987-1998	In revision (5 provinces); As introduced (5 provinces)
Chile	National	1980	In revision
Chinese Taipei	National	1997	In revision
Cyprus	National	1978	As introduced
Czech Republic	National	1996	In revision
England	National	1995	In revision, same structure with minor revisions (to be implemented 2000/01)
Finland	National	1994	As introduced
Hong Kong, SAR	National	1986	In revision
Hungary	National	1995	As introduced
Indonesia	National	1994	In revision
Iran, Islamic Rep.	National	1996	In revision
Israel	National	1997-1998	In revision
Italy	National	1979	As introduced
Japan	National	1993	As introduced
Jordan	National	1993	Slight revisions annually
Korea, Rep. of	National	1995	As introduced
Latvia (LSS)	National	1992-1994	In revision
Lithuania	National	1997	In revision
Macedonia, Rep. of	National	1979 (adaptations in 1995)	As introduced
Malaysia	National	1990	In revision
Moldova	National	1991	In revision
Morocco	National	1991	In revision
Netherlands	National	1993 (slight adaptations in 1998)	As introduced
New Zealand	National	1995	As introduced
Philippines	National	1998	In revision
Romania	National	1993	In revision
Russian Federation	National	1998	In revision
Singapore	National	1993	In revision
Slovak Republic	National	-	-
Slovenia	National	1983	In revision
South Africa	National	1984	In revision
Thailand	National	1990	In revision
Tunisia	National	1997	In revision
Turkey	National	1992	In revision
United States	Regional \& Local	1990-1999	As of 1999, 47 out of 50 states have completed content standards

1 Belgium (Flemish): Curricula were introduced as follows: 1997-98 (biology); 1997 (technological education), early 1990 (physics); 1997 (earth science); 1997-99 (applied sciences); 1989 (scientific work); 1989-97 (natural science).

How Do Countries Support and Monitor Curriculum Implementation?

Education systems use different ways to achieve the best match between the intended and the implemented curriculum. For example, teachers can be trained in the content and pedagogical approaches specified in the curriculum guides. Another way to help ensure alignment is to develop instructional materials, including textbooks, instructional guides, and ministry notes, that are tailored to the curriculum. Systems can also monitor implementation by means of school inspection or audit. The different methods used by the timss 1999 countries are shown in Exhibit 5.3. It is assumed that monitoring implementation encourages teachers to use the official curriculum in planning their teaching programs. Testing and assessment of the intended curriculum are also widely used to support and monitor curriculum implementation; these are addressed in Exhibits $5 \cdot 4$ and $5 \cdot 5$
Of the methods for supporting and monitoring curriculum implementation shown in Exhibit 5.3, 10 countries reported using all six, and a further 13 countries used five. Support for the national/regional science curriculum as part of pre-service education was noted by 24 of the 38 countries, and nearly all reported using in-service teacher education for this purpose. A system of school inspection or audit was used by 31 countries.

	Pre-Service Teacher Education	In-Service Teacher Education	Mandated or Recommended Textbook(s)	Instructional or Pedagogical Guide	Ministry Notes and Directives	System of School Inspection or Audit
Australia ${ }^{1}$ Belgium (Flemish) Bulgaria Canada 2 Chile	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \end{aligned}$	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \end{aligned}$		\cdot		\bullet
Chinese Taipei Cyprus Czech Republic England Finland	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \\ & \bullet \end{aligned}$				\bullet	
Hong Kong, SAR Hungary Indonesia Iran, Islamic Rep. Israel	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \end{aligned}$		$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \\ & \bullet \end{aligned}$	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \\ & \bullet \\ & \bullet \end{aligned}$		
Italy Japan Jordan Korea, Rep. of Latvia (LSS)			$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \end{aligned}$			
Lithuania Macedonia, Rep. of Malaysia Moldova Morocco		$\stackrel{\rightharpoonup}{\bullet}$			$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \end{aligned}$	
Netherlands New Zealand Philippines Romania Russian Federation		$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \\ & \bullet \end{aligned}$				
Singapore Slovak Republic Slovenia South Africa Thailand		$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \\ & \bullet \end{aligned}$				
Tunisia Turkey United States ${ }^{3}$	+			$+$		

Country reported that method is used to support or monitor the implementation of the national/regional curriculum at grade 8

+ Not applicable nationally

[^1]2 Canada: Results are for the majority of provinces.
3 United States: Methods are implemented by individual states and vary from state to state. As of 1998, 13 of 50 states have policies on textbook/materials selection; 8 of 50 states have policies recommending textbook/materials.

What Countries Have Public Examinations in Science?

Using public examinations as a way to select students for university or academic tracks in secondary school can be an important motivating factor for student achievement. Exhibit $5 \cdot 4$ shows information on public examinations and their purpose. Thirty-six countries reported having public examinations or awards, at one or more grades, that include testing achievement in science. Most countries held their examinations in the final year of schooling for certification and selection to higher education (often, university education). Certification also provides students not going on to full-time post-secondary education with evidence of educational attainment for prospective employers. In about one-third of the countries, public examinations were also reported to be used to select students for entry to different types of secondary school, or to assign them to different tracks or courses within secondary schools. Providing feedback to policy makers in the educational system, schools, or both was also an important use of assessments in some countries.

Two countries reported having no public examinations in science. Belgium (Flemish) and Chinese Taipei were the only countries where decisions about promotion from one grade to the next, certification, and qualification for entrance to university were made at the school level without reliance on system-wide public examinations.

Australia Belgium (Flemish)	Public Exams/ Awards	Grade(s)	Purpose/Consequences
	Yes	12	Certification and selection for tertiary education
	No		
Bulgaria	Yes	7/8, 12	Candidates for profile schools (grade 7 or 8); certification and entrance to university -not taken by all students (grade 12)
Canada ${ }^{1}$	Yes	$\begin{gathered} 12 \text { (2 provinces); } \\ 6,9,12 \\ \text { (1 province) } \end{gathered}$	Certification (grade 12); feedback to system and schools
Chile	Yes	12	Entry to university
Chinese Taipei	No		
Cyprus Czech Republic	Yes	9,12	Certification (grade 9); certification and entry to university (grade 12)
	Yes	13	Certification (science can be chosen as one of four subjects for leaving examination)
England	Yes	10, 12	Certification (grade 10); certification and entry to university (grade 12); feedback to system and schools
Finland	Yes	12	Certification and selection for tertiary education; in the matriculation exam, the General Studies Test section includes questions related to physics, chemistry, and biology in addition to seven other topic areas. Students can choose to take either the General Studies Test or the Mathematics Test
Hong Kong, SAR	Yes	6, 11, 13	School placement (grade 6); certification and placement for 12th grade (grade 11); placement in tertiary institutions (grade 13)
Hungary Indonesia	Yes	12	Certification and entry to university (science is not a compulsory subject)
	Yes	6, 9, 12	Leaving exam, selection for junior secondary school (grade 6); selection for senior secondary school (grade 9); leaving exam (grade 12); system-level feedback, in some cases school- and classroom-level feedback
Iran, Islamic Rep.	Yes	11, 12	Certification (grade 11); entry to tertiary education (grade 12); in addition, provincial exams are administered at grade 8
Israel	Yes	11 or 12	Matriculation certification for those choosing entry to specific areas in the university
Italy Japan Jordan Rep. of ia (LSS)	Yes	13	Certification and entry to university
	Yes	9,12	Entry to prefectural and municipal upper secondary schools (grade 9); entry to national, prefectural and municipal universities (grade 12)
	Yes	12	Certification and entry to tertiary education
	Yes	12	College entrance exam for selection of students
	Yes	12	Certification
Lithuania Macedonia, Rep. of Malaysia	Yes	12	Leaving examination
	Yes	12	Certification and entry to university; the exam constitutes 40% of the required points for entry to university with the remaining points based on university entry exams
	Yes	6, 9, 11, 13	Feedback to system and schools, achievement test (grade 6); entry to course tracks (grade 9); certification and end of secondary (grade 11); certification and entry to university (grade 13)
Moldova Morocco	Yes	9,11/12	Certification, selection for high school (grade 9); graduation (grade 11 or 12 depending on school)
	Yes	$6,9,10,11,12$	Remedial test for retention purposes (grade 6); certification, selection to secondary, and selection to courses (grade 9); certification and entry to tertiary (grade 12); feedback to system and schools
Netherlands New Zealand	Yes	10, 11, 12	End-of-track examinations; exams recommended at grades 6 and 8
	Yes	10,12	Certification, course selection (grade 10); entry to tertiary education (grade 12); feedback to system and schools; informal between-school comparisons
Philippines Romania Russian Federation	Yes	6,10	Feedback to system and schools; entry to university set by each institution
	Yes	12	Certification (science can be chosen as one of 7 subjects)
	Yes	9,11	Certification (not state compulsory, may be administered at the regional or school level)
Singapore Slovak Republic Slovenia South Africa Thailand	Yes	6, 10, 12	Feedback to system and schools; selection into courses; certification and entry to university
	Yes	12	Certification (science can be chosen as one of four subjects for leaving exam)
	Yes	12	Certification and entry to tertiary education
	Yes	12	Certification and selection for tertiary education
	Yes	12	Entry to university
Tunisia	Yes	6, 9, 13	Feedback to system and schools; regional exam for promotion (grade 6); selection for schools/courses; promotion (grade 9)
Turkey	Yes	8,11	Placement in specialized schools for some students (grade 8); entry to university (grade 11)
United States ${ }^{2}$	Yes	varies	Primarily feedback to system and schools; in 8 states grade promotion is dependent on results; in 18 states graduation is dependent on results of grade 12 exams

Background data provided by National Research Coordinators.
1 Canada: Public examinations are administered in 3 of 10 provinces.

2 United States: As of 1997-1998, public examinations are administered in 36 of 50 states at grades 7-8 or 9-12.

What Countries Have System-Wide Assessments in Science?

Although national public examinations can provide information of interest to national and regional policy makers, their main purpose is to make decisions about individual students. In comparison, system-wide assessments are designed primarily to inform policy makers about matters such as national standards of achievement of the intended curriculum objectives, strengths and weaknesses in the curriculum or how it is being implemented, and whether educational achievement is improving or deteriorating.

Exhibit $5 \cdot 5$ summarizes information about national assessments in science. Such assessments were conducted in 23 of the participating countries. Seven of these - Malaysia, Morocco, the Netherlands, the Philippines, Singapore, Tunisia, and Turkey - reported using public examinations as system-wide assessments, and therefore the same examination is featured in Exhibits $5 \cdot 4$ and $5 \cdot 5$. Of the 23 countries that reported conducting system-wide assessments, nine reported testing all students in the grade and 11 reported testing a sample from the grade. One of these countries, the Netherlands, reported testing both the entire grade level and a sample. Australia and Canada reported state- and provincial-level testing both for the entire grade and for a sample. In addition, two countries, Indonesia and the Russian Federation, reported administering periodic sample-based assessments at various grades for system-level feedback and research purposes, respectively. Most countries tested from two to four grades; Korea tested at six grades.

Generally, the purpose of the system-wide assessments was to provide feedback to government policy makers and the public. Several countries that reported assessing all students in a grade used these results in a variety of ways, including providing feedback to individual schools. England and Hungary also used information about individual students for course placement or guidance.

In addition to collecting information about examinations and assessments, questionnaires and interviews were used to determine whether, and to what extent, explicit achievement standards were a feature of intended curricula (see Exhibit R2.1 in the reference section). About twothirds of the countries reported that such standards were incorporated in their curricula or related documents. However, the term "achievement standards" means different things in different countries and was unfamiliar to some. Some countries regard them as learning objectives, and others include in this category performance indicators that describe levels of required or desired performance. Exhibit R2.1 includes countries that reported learning objectives or performance objectives as a component of their curriculum documents.

[^2]
How Much Instructional Time Is Recommended for Science?

The different percentages of time devoted to mathematics instruction at different grades highlight one of the difficulties in investigating the relationship between achievement and instructional time across countries. If instructional time is measured only for the eighth grade, the total time for which students in a country have been exposed to instruction in science during their schooling may be under- or over-estimated. These data for grades 4,6 , and 8 provide a better estimate of students' intended instructional time for science across the school years.

Percentages of instructional time designated for the sciences specified in the intended curricula for grades 4,6 , and 8 are shown in Exhibit 5.6. The pattern across countries shows that the percentage of time intended for science instruction stays relatively the same or increases from grade 4 to grade 6 , and increases from grade 6 to grade 8 . Interestingly, the reverse pattern holds for mathematics. ${ }^{1}$ Average percentages of time for science instruction across all countries were 11,13 , and 16 percent for grades 4 , 6 , and 8 , respectively. Percentages of total instructional time for the sciences ranged from five to 30 percent at grade 4 and from six to 30 percent at grade 6. At the eighth grade, the percentage of instructional time specified for science ranged from five to 10 percent in Italy to 32 percent in Moldova, which also reported the largest percentages at grades 4 and 6 . The percentage of instructional time for science exceeded 15 percent in two countries at grade 4, five countries at grade 6, and 12 countries at grade 8 ; of the latter, eight countries reported that 25 percent or more of instructional time was intended for science. Schools' and teachers' reports of the percentage of instructional time actually devoted to the sciences at grade 8, shown in Exhibit 6.4 in the next chapter, generally correspond with the intended percentages reported in Exhibit 5.6.

[^3]

Exhibit 5.6 Overleaf

Background data provided by National Research Coordinators. All data rounded to the nearest whole number
1 Canada: Results shown are for the majority of provinces.

2 Lithuania: The instructional time specified for science includes geography. At grade 6, 7\% of the tota instructional time is for geography; at grade $8,3-7 \%$ of the total instructional time is for geography.

N/S indicates instructional time not specified in the national/regional curriculum.
A dash (-) indicates data are not available.
\square

	Instructional Time Specified for Science			
	Grade 4	Grade 6	Grade 8	
Netherlands	N/S	N/S	18\%	At grade 8, students take the following sciences: earth science is included in geography 6\%; physics/chemistry 6\%; biology 6\%.
New Zealand	N/S	N/S	N/S	All schools are required to teach science as part of a "balanced curriculum". Schools decide on instructional time. Usually in primary school, language (which includes reading) and mathematics are allocated considerably more time than science. Time for science, mathematics, and English are about the same in secondary school.
Philippines	12\%	11\%	20\%	In secondary school, instructional time in sciences is doubled. In addition, science-based materials are used in the English courses.
Romania	7\%	21\%	25\%	
Russian Federation	5\%	14\%	25\%	
Singapore	8\%	10\%	15\%	As students progress through school, there is more curriculum time allocated for science with more investigative, hands-on, and project-based activities.
Slovak Republic	-	-	-	
Slovenia	14\%	15\%	27\%	The emphasis on science is relatively equal to other subjects up to grade 7 . In grades $7-8$, three separate science courses are introduced with a greater percentage of instructional time. Science is taught as an integrated course focusing on life and society in grades 1-3. Subject knowledge about nature is introduced as an integrated course in grades $4-5$. Specialist courses are introduced in grades 6-8. In grade 6 , earth science is integrated in "geography." In grade 7, biology, chemistry, and physics are introduced. Geography does not include any science topics after grade 6 .
South Africa	N/S	N/S	N/S	
Thailand	6\%	6\%	9\%	As students progress through school, there is an increased focus on problem-solving, science projects, and thinking processes.
Tunisia	5\%	5\%	8\%	
Turkey	10\%	10\%	10\%	As students progress through school, there is an increased focus on project-based curricula.
United States	N/S	N/S	N/S	States do not generally specify; it is largely a local decision.

How Do Countries Deal with Individual Differences?

The challenge of maximizing opportunity to learn for students with widely differing abilities and interests is met differently in different countries. Exhibit 5.7 summarizes questionnaire and interview data on how countries dealt with this issue in organizing the intended curricula.

Some countries indicated using more than one method of dealing with individual differences among students, and in these cases the category describing the main method was reported. The most common approach, found in 25 countries, was to have the same intended curriculum for all students, but to recommend that teachers adapt the level and scope of their teaching to the abilities and needs of their students. Adaptations for individuals and classes were also recommended in the intended curricula of some countries with different levels of curricula or different curricula for different groups.

In the Czech Republic and England, science topics were taught at different levels with different groups. The Czech Republic had two levels and England nine. In England's curriculum, the levels were defined in terms of progressively more complex performance to be demonstrated. Among the countries with different curricula for different groups of students, Belgium (Flemish) provided two different levels, Singapore three, and the Netherlands four.

National Research Coordinators from nine countries reported that their official science curricula did not address the issue of differentiating instruction for grade 8 students with different abilities or interests, but this does not necessarily mean that schools and teachers in those countries did not make allowance for individual differences. Schools' reports on how they organize to accommodate students with different abilities or interests are shown in Exhibit R2.2 in the reference section. Substantial percentages of students in many countries were in schools that offered remedial and enrichment sciences, including several of the countries without specific curricular statements about differentiation.

Exhibit 5.7 Differentiation of Instruction for Students with Different Abilities or Interests

Australia Belgium (Flemish)	Curriculum Addresses Differentiation	Approaches to Addressing Students with Different Abilities or Interests at Grade 8			
		Same Curriculum for All Students, and Teachers Adapt to Students' Needs	Same Curriculum with Different Levels for Different Groups	Different Curricula for Different Groups	Number of Curriculum Levels
	Yes	Yes	No	No	1
	Yes	No	No	Yes	2
Bulgaria	Yes	Yes	No	No	1
Canada	Yes	Yes	No	No	1
Chile	No				
Chinese Taipei	Yes	Yes	No	No	1
Cyprus	Yes	Yes	No	No	1
Czech Republic ${ }^{1}$	Yes	Yes	Yes	No	2
England ${ }^{2}$	Yes	No	Yes	No	9
Finland	Yes	Yes	No	No	1
Hong Kong, SAR	Yes	Yes	No	No	1
Hungary	Yes	Yes	No	No	1
Indonesia	No				
Iran, Islamic Rep.	Yes	Yes	No	No	1
Israel	Yes	Yes	No	No	1
Italy	No				
Japan	No				
Jordan	Yes	Yes	No	No	1
Korea, Rep. of	No				
Latvia (LSS)	No				
Lithuania	No				
Macedonia, Rep. of	Yes	Yes	No	No	1
Malaysia	Yes	Yes	No	No	1
Moldova	No				
Morocco	Yes	Yes	No	No	1
Netherlands	Yes	No	No	Yes	4
New Zealand	Yes	Yes	No	No	1
Philippines	Yes	Yes	No	No	1
Romania	Yes	Yes	No	No	1
Russian Federation	Yes	Yes	No	No	1
Singapore	Yes	No	No	Yes	3
Slovak Republic	Yes	Yes	No	No	1
Slovenia	Yes	Yes	No	No	1
South Africa	No				
Thailand	Yes	Yes	No	No	1
Tunisia	Yes	Yes	No	No	1
Turkey	Yes	Yes	No	No	1
United States ${ }^{3}$	Yes	Yes	No	No	1

1 Czech Republic: There is the same curriculum with different levels for different groups in physics and chemistry (2 levels); there is one curriculum for all students, and teachers adapt to students' needs, in life science and earth science.

2 England: While there is one "programme of study" for grades 6-8, the document identifies nine per-formance-levels describing the types and range of performance that pupils working at a particular level should demonstrate

3 United States: Most state standards are designed for all students.

What Are the Major Characteristics of the Intended Curriculum?

Exhibit 5.8 indicates the relative emphasis given to various aspects of science instruction in the intended curriculum. Knowing basic science facts and understanding science concepts received major emphasis in the curriculum of most participating countries, and at least moderate emphasis was placed on application of science concepts in almost all national curricula. Few countries gave major emphasis to using laboratory equipment and performing science experiments, but there were some notable exceptions. Top-performing Singapore, Korea, and Japan were among the 10 countries that reported major emphasis for both. The Czech Republic's intended curriculum had minor or no emphasis on any aspect of practical work, and several other countries' curricula had minor or no emphasis on performing experiments.

The increasing importance of technology in school curricula is reflected in the major emphasis given by 12 countries and the moderate emphasis given by 14 to "science, technology, and society." Thematic approaches were more common in science than in mathematics and received major emphasis in 13 countries. Multicultural approaches and integration of science with school subjects other than mathematics were the approaches least likely to be given major or moderate emphasis.

It is possible that in some countries some of the approaches and processes reported as having minor or no emphasis in the intended curriculum may receive more emphasis in the implemented curriculum. For example, although assessing student learning in science was reported to receive minor or no emphasis in the intended curriculum of five countries Chile, Indonesia, Malaysia, Romania, and South Africa - teachers there nevertheless regularly assess their students' learning in science. In these five countries, the teachers of 60 percent or more of the students reported giving quite a lot or a great deal of weight to either teacher-made tests requiring explanations or teacher-made objective tests (see Exhibit R3. 18 in the reference section).

Background data provided by National Research Coordinators.
1 Australia: Results shown are for the majority of states/territories.

2 Belgium (Flemish) and Russian Federation: The single codes are derived from a combination of codes for individual sciences.
3 Canada: Results shown are for the majority of provinces.

What Science Content Do Teachers Emphasize at the Eighth Grade?

Teachers from countries in which eighth-grade science was taught as a general or integrated course were asked what subject matter they had emphasized with their classes. Their responses are shown in Exhibit 5.9. In six of the 21 countries, at least 80 percent of students were in classes that emphasized science as a general/integrated subject. In Canada, Italy, and the United States, earth science was emphasized in considerably more classrooms than in other countries. Biology was more likely than the other sciences to be emphasized in Italy and Tunisia. Countries where relatively high proportions of students had seen emphasis on physics, chemistry, or both were Cyprus, Iran, Israel, Jordan, Korea, and South Africa.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \& \multicolumn{7}{|c|}{Percentage of Students Whose Teachers Report the Subject Matter Emphasized Most in Their Grade 8 Science Class} \\
\hline \& \& General/ Integrated Science \& Earth Science \& Biology \& Physics \& Chemistry \& Physical Science (chemistry/ physics) \& Other \\
\hline Australia Canada Chile Cyprus England \& s \& \begin{tabular}{l}
83 (2.6) \\
55 (3.5) \\
71 (4.0) \\
17 (3.6) \\
- -
\end{tabular} \& \[
\begin{array}{r}
0(0.3) \\
14(2.3) \\
1(0.9) \\
1(1.3) \\
--
\end{array}
\] \& \[
\begin{array}{r}
5(1.6) \\
6(1.7) \\
22(3.4) \\
17(3.2) \\
--
\end{array}
\] \& \[
\begin{gathered}
1(0.4) \\
1(0.7) \\
1(0.9) \\
39(4.5) \\
--
\end{gathered}
\] \& \[
\begin{array}{r}
4(1.3) \\
1(0.6) \\
0(0.0) \\
13(2.6)
\end{array}
\]
- - \& \[
\begin{array}{r}
2(0.7) \\
19(2.7) \\
2(1.1) \\
6(2.3) \\
--
\end{array}
\] \& \[
\begin{aligned}
\& 4(1.2) \\
\& 3(1.2) \\
\& 2(1.2) \\
\& 6(2.8) \\
\& --
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Hong Kong, SAR Iran, Islamic Rep. \\
Israel \\
Italy \\
Japan
\end{tabular} \& s \& \[
\begin{array}{r}
92(2.6) \\
53(4.6) \\
34(4.4) \\
0(0.0) \\
64(4.6)
\end{array}
\] \& \[
\begin{array}{r}
0(0.0) \\
0(0.0) \\
1(0.0) \\
20(3.2) \\
1(1.0)
\end{array}
\] \& \[
\begin{array}{r}
3(1.5) \\
13(2.7) \\
21(3.9) \\
49(3.9) \\
7(2.4)
\end{array}
\] \& \[
\begin{array}{r}
0(0.0) \\
14(3.1) \\
3(1.3) \\
13(2.6) \\
6(2.1)
\end{array}
\] \& \[
\begin{array}{r}
1(0.0) \\
3(1.4) \\
7(2.5) \\
3(1.2) \\
11(2.7)
\end{array}
\] \& \[
\begin{array}{r}
4(1.9) \\
16(2.9) \\
28(4.5) \\
11(2.6) \\
6(2.1)
\end{array}
\] \& \[
\begin{aligned}
\& 0(0.0) \\
\& 1(0.8) \\
\& 6(2.1) \\
\& 3(1.4) \\
\& 5(1.9)
\end{aligned}
\] \\
\hline Jordan Korea, Rep. of Malaysia New Zealand Philippines \& \& \[
\begin{array}{r}
30(4.1) \\
49(4.0) \\
100(0.0) \\
94(1.7) \\
88(2.7)
\end{array}
\] \& \[
\begin{array}{ll}
3 \& (1.4) \\
2 \& (1.0) \\
0 \& (0.0) \\
1 \& (0.5) \\
6 \& (2.1)
\end{array}
\] \& 12 (3.0) 10 (2.0) 0 (0.0) 2 (0.9) 3 (1.2) \& \begin{tabular}{l}
19 (3.5) \\
5 (1.6) \\
0 (0.0) \\
1 (0.6) \\
0 (0.0)
\end{tabular} \& \[
\begin{array}{r}
14(3.2) \\
5(1.7) \\
0(0.0) \\
0(0.0) \\
1(0.8)
\end{array}
\] \& \[
\begin{array}{r}
21(3.6) \\
26(3.2) \\
0(0.0) \\
2(1.6) \\
2(1.2)
\end{array}
\] \& \[
\begin{array}{ll}
1 \& (0.8) \\
4 \& (1.6) \\
0 \& (0.0) \\
1 \& (0.6) \\
1 \& (0.0)
\end{array}
\] \\
\hline \begin{tabular}{l}
Singapore South Africa Thailand \\
Tunisia \\
Turkey \\
United States
\end{tabular} \& r

r \& \[
$$
\begin{array}{r}
69 \\
48 \\
48 \\
(4.1) \\
81 \\
\hline 1.2) \\
8 \\
8
\end{array}
$$(2.4)

\] \& \[

$$
\begin{array}{r}
0(0.0) \\
1(0.8) \\
7(2.0) \\
8(2.1) \\
0(0.3) \\
28(4.8)
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
5(2.0) \\
7(2.5) \\
4(1.6) \\
81(3.4) \\
3(1.3) \\
5(1.5)
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 4(1.8) \\
& 8(2.8) \\
& 1(0.8) \\
& 1(0.0) \\
& 8(2.1) \\
& 2(0.8)
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 7(2.3) \\
& 5(2.3) \\
& 3(1.3) \\
& 0(0.0) \\
& 2(1.0) \\
& 3(1.0)
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
11(2.5) \\
31(4.0) \\
3(1.4) \\
0(0.0) \\
11(2.7) \\
21(3.1)
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 4(1.6) \\
& 1(0.9) \\
& 1(1.0) \\
& 3(1.5) \\
& 2(0.9) \\
& 1(0.4)
\end{aligned}
$$
\]

\hline International Avg. \& \& 58 (0.8) \& 5 (0.4) \& 14 (0.5) \& 6 (0.4) \& 4 (0.4) \& 11 (0.6) \& $2(0.3)$

\hline
\end{tabular}

[^4]A dash (-) indicates data are not available.
An " r " indicates teacher response data available for $70-84 \%$ of students. An "s" indicates teacher response data available for $50-69 \%$ of students.

What Science Topics Are Included in the Intended Curriculum?

In the course of their meetings on planning and implementation of timss 1999, the National Research Coordinators developed a list of science topics that they agreed covered most of the content in the intended science curriculum in their respective countries. This list of topics, presented in Exhibit 5.10 , built on the topics covered in the timss 1995 science test and included in the teacher questionnaire. It represents a comprehensive list of the topics likely to have been included in the curricula of the participating countries up to and including eighth grade. From the following choices, the National Research Coordinators indicated the percentage of students in their own countries expected to have been taught each topic:

- All or almost all students (at least go percent)
- About half of the students
- Only the more able students (top track - about 25 percent)
- Only the most advanced students (io percent or less)

Exhibit 5.11 summarizes the data according to the percentage of topics intended to be taught to all or almost all students (at least go percent) in each country, across the entire list of topics and for each content area. There was marked variation between content areas and between countries. In 21 countries it was intended that all, or nearly all, students be taught all of the earth science topics. All environmental and resource issues topics were intended to be taught to practically all students in 20 countries, while in six countries none of these topics were intended for all or almost all students. On average, biology topics were most likely, and chemistry topics least likely, to have been included in the intended curricula up to and including eighth grade.

In four countries - Moldova, Slovenia, Turkey, and the United States - it was intended that all of the topics in five content areas and some in the sixth be taught to all students. On the other hand, intended curricula in Belgium (Flemish), Chinese Taipei, Macedonia, Morocco, and South Africa included no content area in which all topics were to be taught to all students. Information on specific topics in the intended curricula for each content area is presented in Exhibits R2.3 through R2.8 in the reference section of this report.

It should be noted that some countries reported having different curricula or different levels of curriculum for different groups of students, as detailed in Exhibit 5.7. Not surprisingly, then, these countries often reported that about half, only the more able (25 percent), or the top 10
percent of students were expected to have been taught substantial percentages of the topics. In addition, if content within a topic area required different responses, National Research Coordinators chose the response that best represented the entire topic area and noted the discrepancy (see Exhibit A. 11 in the appendix for details).

Exhibit 5.10 Science Topics Included in the TIMSS Questionnaires

Earth Science

- Earth's physical features (layers, landforms, bodies of water, rocks, soil)
- Earth's atmosphere (layers, composition, temperature, pressure)
- Earth processes and history (weather and climate, physical cycles, plate tectonics, fossils)
- Earth in the solar system and the universe (interactions between Earth, sun, and moon; relationship to planets and stars)

Biology

- Human body - structure and function of organs and systems

■ Human bodily processes (metabolism, respiration, digestion)

- Human nutrition, health, and disease
- Biology of plant and animal life (diversity, structure, life processes, life cycles)
- Photosynthesis
- Interactions of living things (biomes and ecosystems, interdependence)
- Reproduction, genetics, evolution, and speciation

Physics

- Physical properties and physical changes of matter (weight, mass, states of matter, boiling, freezing)
- Subatomic particles (protons, electrons, neutrons)

■ Energy types, sources, and conversions (chemical, kinetic, electric, light energy; work and efficiency)

- Heat and temperature
- Gas laws (relationship between temperature/pressure/volume)
- Wave phenomena, sound, and vibration
- Light (reflection, refraction, light and color)
- Electricity and magnetism (circuits, conductivity, magnets)
- Forces and motion (types of forces, balanced/unbalanced forces, fluid behavior, speed, acceleration)
- Buoyancy

Topics included in the curriculum and teacher questionnaires (intended and implemented curriculum).

Topics also included in the curriculum questionnaire (intended curriculum).
\square

Chemistry

■ Classification of matter (elements, compounds, solutions, mixtures)
■ Structure of matter (atoms, ions, molecules, crystals)
Formation of solutions (solvents, solutes, soluble/insoluble substances)

- Acids, bases, and salts
- Chemical reactivity and transformations (definition of chemical change, oxidation, combustion)
- Energy and chemical change (exothermic and endothermic reactions, reaction rates)
- Chemical bonding and compound formation (ionic, covalent)
- Chemical equations
- Atomic structure
- Atomic number and atomic mass
- Periodic table
- Valency

Environmental and Resource Issues

- Pollution (acid rain, global warming, ozone layer, water pollution)
- Conservation of natural resources (land, water, forests, energy resources)
- Food supply and production, population, and environmental effects of natural and man-made events

Scientific Inquiry and the Nature of Science

■ Scientific method (formulating hypotheses, making observations, drawing conclusions, generalizing)
■ Experimental design (experimental control, materials, and procedures)

- Scientific measurements (reliability, replication, experimental error, accuracy, scales)
- Using scientific apparatus and conducting routine experimental operations
- Gathering, organizing, and representing data (units, tables, charts, graphs)
- Describing and interpreting data
- Topics included in the curriculum and teacher questionnaires (intended and implemented curriculum).

Topics also included in the curriculum questionnaire (intended curriculum).

Exhibit 5.11 Science Topics in the Intended Curriculum for At Least 90\% of Students, Up to and Including Eighth Grade

	Percentage of Topics Intended to Be Taught to All or Almost All (at least 90\%) Students						
	Overall	Earth Science	Biology	Physics	Chemistry	Environmental and Resource Issues	Scientific Inquiry and the Nature of Science
Australia	79	100	71	80	58	100	100
Belgium (Flemish)	38	0	71	40	0	67	83
Bulgaria	90	100	57	100	100	100	83
Canada	48	75	86	20	17	100	67
Chile	60	100	100	30	25	100	83
Chinese Taipei	69	25	86	80	58	67	83
Cyprus	62	75	86	40	50	100	67
Czech Republic	79	100	86	90	83	33	50
England	71	75	71	80	42	100	100
Finland	55	25	100	30	50	33	83
Hong Kong, SAR	50	25	100	60	42	0	33
Hungary	83	100	100	100	100	0	33
Indonesia	55	100	86	90	8	100	0
Iran, Islamic Rep.	57	100	100	60	50	33	0
Israel	57	0	43	40	75	67	100
Italy	67	75	100	70	25	100	83
Japan	62	100	57	70	50	0	83
Jordan	88	100	86	100	67	100	100
Korea, Rep. of	60	100	71	70	50	0	50
Latvia (LSS)	36	100	14	30	33	100	0
Lithuania	76	100	86	90	83	33	33
Macedonia, Rep. of	69	25	86	90	92	67	0
Malaysia	57	50	86	50	33	33	100
Moldova	95	100	100	100	83	100	100
Morocco	5	0	0	20	0	0	0
Netherlands	24	0	43	20	0	100	33
New Zealand	52	100	43	60	25	100	50
Philippines	55	100	71	50	42	67	33
Romania	81	100	100	70	92	100	33
Russian Federation	71	100	29	70	100	100	33
Singapore	79	100	100	70	58	100	83
Slovak Republic	-	-	-	-	-	-	-
Slovenia	95	100	100	80	100	100	100
South Africa	21	25	29	30	25	0	0
Thailand	64	50	100	40	42	100	100
Tunisia	45	25	100	40	0	67	83
Turkey	95	100	100	100	100	100	67
United States	86	100	100	100	50	100	100
International Avg.	63	72	77	64	52	69	60

Have Students Been Taught the Topics Tested by TIMSS?

In interpreting the achievement results, it is important to consider how extensively the topics tested are taught in the participating countries. As shown in Exhibits 5.12 through 5.17 , the six major science content areas assessed in timss 1999 were represented by 31 topic areas. For each area, teachers indicated whether their students had been taught the topics before this year, one to five periods this year, more than five periods this year; whether the topics had not yet been taught; or whether the teacher did not know. Exhibits 5.12 through 5.17 show the percentages of students in each country reported to have been taught each topic before or during the year of the testing.

Although the international average percentage of students whose teachers reported that earth science topics (see Exhibit 5.12) were taught before or during the year of testing was greater than 70 percent for each topic, countries varied greatly in topic coverage. For example, in 19 countries at least 8 o percent of students had been taught about "earth's physical features," but in two countries (Hong Kong and Japan) fewer than 20 percent of the students were reported to have been taught this topic. Topics from this content area may be taught in subjects other than science in some countries, so the percentage of students having been taught these topics may be underestimated for a few countries.

With the exception of "reproduction, genetics, evolution, and speciation," biology topics (see Exhibit 5.13) had been taught to the great majority of students in most countries. Teachers in nine countries reported that 8 o percent or more of their students were taught all of the biology topics. In comparison, teachers in four countries - Canada, Finland, South Africa and Tunisia - reported that less than 55 percent of their students were taught four of the six topics.

Of the physics topics (see Exhibit 5.14), "physical properties and the physical changes of matter" had the greatest coverage, with 91 percent of students, on average internationally, having been taught this topic. Lowest was "wave phenomena, sound, and vibration," with an international average of 52 percent. At the extremes were the Netherlands, where all students were reported to have been taught all of the physics topics, and Tunisia, where very small percentages of students had been taught any of them.

Instructional coverage was high for three of the four chemistry topics (see Exhibit 5.15), but only 5^{8} percent of students, internationally on average, were taught "energy and chemical change." Teachers in 12 countries, including high-performing Chinese Taipei, Hungary, Korea,

and the Netherlands, reported having taught "classification of matter" and "structure of matter" to 97 percent or more of their students. Most of these countries reported that over go percent of their students were taught "chemical reactivity and transformations" as well. Furthermore, in both Hungary and the Netherlands, 97 percent or more of the students were reported to have been taught all the topic areas. In contrast, in Belgium (Flemish) and Tunisia, teachers reported that fewer than ${ }_{15}$ percent of their students were taught each of the chemistry topic areas.

Most students in most countries were taught environmental and resource issues topics (see Exhibit 5.16), especially "pollution" and "conservation," with 21 countries teaching these topics to 75 percent or more of their students. One country, Japan, reported teaching fewer than 30 percent of their students each of the topics in this area.

Each of the scientific inquiry and the nature of science topics (see Exhibit 5.17) was taught to 75 percent or more of the students, on average internationally. Ninety percent or more of the students in four countries - England, the Netherlands, Romania, and Singapore - were taught all six topic areas. Teachers in all countries taught each topic to more than 60 percent of their students except in seven countries: Belgium (Flemish), Iran, Israel, Jordan, South Africa, Tunisia, and Turkey.

	Earth's physical features (layers, landforms, bodies of water, rocks, soil)		Earth's atmosphere (layers, composition, temperature, pressure)		Earth processes and history (weather and climate, physical cycle, plate tectonics, fossils)		Earth in the solar system and the universe (interactions between earth, sun, and moon; relationship to planets and stars)	
Australia	r	73 (3.4)	r	65 (3.5)		67 (3.4)	r	80 (3.3)
Belgium (Flemish)	r	93 (3.0)	r	45 (4.3)		64 (5.2)	r	16 (3.4)
Bulgaria		99 (0.6)	r	99 (0.6)		99 (0.6)	r	99 (0.8)
Canada	s	91 (1.9)	s	83 (2.1)	s	86 (2.3)	s	80 (3.1)
Chile		95 (1.5)		95 (1.8)	r	81 (2.9)		94 (1.9)
Chinese Taipei ${ }^{1}$						- -		- -
Cyprus	S	45 (6.6)	s	38 (6.0)	s	39 (5.6)	s	88 (3.6)
Czech Republic		99 (0.4)		98 (1.2)		97 (1.7)		98 (1.2)
England	s	86 (4.0)	s	64 (3.9)	s	71 (3.5)	s	90 (3.6)
Finland		65 (4.0)	r	38 (4.0)		62 (3.5)	r	45 (4.1)
Hong Kong, SAR	s	17 (3.2)	r	61 (5.0)	s	17 (4.0)	s	15 (3.8)
Hungary		83 (3.1)		72 (3.9)		88 (2.8)		79 (3.8)
Indonesia		98 (1.2)		97 (1.5)		88 (3.1)		97 (1.5)
Iran, Islamic Rep.		95 (2.4)		72 (4.4)		69 (3.7)		68 (3.9)
Israel		x x		$\mathrm{x} \times$		$\mathrm{x} \times$		x x
Italy		82 (2.9)		95 (1.5)		81 (3.2)		70 (3.6)
Japan		6 (2.2)		74 (3.7)		39 (4.1)		99 (0.7)
Jordan		98 (1.1)		84 (3.4)		88 (3.1)		82 (3.7)
Korea, Rep. of		91 (2.4)		98 (1.2)		95 (1.5)		52 (4.0)
Latvia (LSS)	s	92 (3.1)	r	83 (4.0)	5	78 (4.6)	r	86 (3.4)
Lithuania *		- -		--		--		- -
Macedonia, Rep. of		88 (2.9)		88 (2.2)	r	86 (2.6)		85 (2.4)
Malaysia		32 (4.1)		32 (3.9)		14 (3.0)		16 (3.2)
Moldova		- -		- -		--		--
Morocco		--		- -		- -		- -
Netherlands		76 (5.6)		91 (2.7)		92 (4.1)	r	82 (4.8)
New Zealand		40 (3.9)		45 (3.9)	r	40 (3.9)		63 (3.5)
Philippines		99 (0.6)		98 (1.1)		98 (1.0)		74 (3.8)
Romania		100 (0.0)		100 (0.0)		99 (1.0)		99 (0.8)
Russian Federation		- -		- -		- -		- -
Singapore		x x		x x		$\mathrm{x} \times$		$\mathrm{x} \times$
South Africa	s	72 (5.2)	s	68 (5.9)		$\mathrm{x} \times$	s	62 (6.0)
Thailand		99 (0.7)		63 (3.8)		95 (1.8)		88 (2.6)
Tunisia		82 (3.5)	r	12 (3.0)		16 (3.4)	r	4 (1.9)
Turkey		42 (3.7)		60 (4.0)		37 (4.2)		73 (3.4)
United States	r	87 (2.5)	r	84 (2.7)	r	92 (2.0)	r	84 (2.3)
International Avg.		77 (0.6)		73 (0.6)		71 (0.6)		71 (0.6)

[^5]() Standard errors appear in parentheses. Because results are rounded to the nearest whole number, some totals may appear inconsistent.
A dash (-) indicates data are not available.
An " r " indicates teacher response data available for $70-84 \%$ of students. An " s " indicates teacher response data available for $50-69 \%$ of students. An " x " indicates teacher response data available for $<50 \%$ of students.

	Human body structure and function of organs and systems	Human bodily processes (metabolism, respiration, digestion)	Human nutrition, health, and disease	Biology of plant and animal life (diversity, structure, life processes, life cycles)	Interactions of living things (biomes, ecosystems, and interdependence)	Reproduction, genetics, evolution, and speciation
Australia Belgium (Flemish) Bulgaria Canada Chile	$\begin{array}{ll} \text { r } & 80(3.3) \\ & 98(1.0) \\ & 94(3.4) \\ \text { s } & 54(3.0) \\ & 95(1.8) \end{array}$	$\begin{array}{lr} \text { r } & 75(3.1) \\ & 100(0.0) \\ & 94(3.4) \\ \text { s } & 49(3.6) \\ & 93(2.1) \end{array}$	$\begin{array}{lr} \text { r } & 75(3.3) \\ & 100(0.0) \\ & 95(3.3) \\ \text { s } & 54(3.8) \\ & 94(1.7) \end{array}$	$\begin{array}{ll} r & 84(2.7) \\ r & 91(2.6) \\ r & 96(2.2) \\ s & 70(3.2) \\ & 96(1.2) \end{array}$	$\begin{array}{ll} \mathrm{r} & 67(3.9) \\ \mathrm{r} & 85(3.7) \\ \mathrm{r} & 65(6.8) \\ \mathrm{s} & 77(2.7) \\ & 99(1.0) \end{array}$	$\begin{array}{ll} \mathrm{r} & 39(3.8) \\ & 94(2.2) \\ \mathrm{r} & 36(5.2) \\ \mathrm{s} & 45(3.7) \\ & 92(2.2) \end{array}$
Chinese Taipei ${ }^{1}$ Cyprus Czech Republic England Finland	$\begin{array}{cc} & -- \\ \text { r } & 100(0.0) \\ & 99(0.4) \\ \text { s } & 96(1.9) \\ & 30(4.0) \end{array}$	-- r $100(0.0)$ $99(0.5)$ s $99(0.8)$ $28(3.5)$	$\begin{array}{lc} & -- \\ \text { r } & 100(0.0) \\ & 98(1.1) \\ \text { s } & 95(2.5) \\ & 28(3.5) \end{array}$	$\begin{array}{ll} & -- \\ & \text { s } \\ & 82(4.1) \\ & 96(2.1) \\ \text { s } & 91(3.2) \\ & 90(2.6) \end{array}$	$\begin{array}{ll} & -- \\ & \text { r } \\ & 40(4.5) \\ & 73(4.4) \\ \text { s } & 84(4.2) \\ & 92(2.4) \end{array}$	$\begin{array}{cc} & -- \\ \text { r } & 30(4.1) \\ & 57(5.4) \\ \text { s } & 80(3.6) \\ & 21(3.4) \end{array}$
Hong Kong, SAR Hungary Indonesia Iran, Islamic Rep. Israel	$\begin{array}{r} 79(3.8) \\ 93(2.2) \\ 100(0.0) \\ \\ 99(0.7) \\ \mathrm{r} \quad 77(3.6) \end{array}$	$76(3.6)$ $94(2.1)$ $99(1.1)$ $99(0.8)$ $r \quad 57(3.9)$	$38(4.7)$ $90(2.6)$ $58(4.5)$ $98(1.0)$ r $36(4.4)$	$\begin{array}{rr} r & 69(4.6) \\ & 99(1.0) \\ & 100(0.3) \\ & 91(2.5) \\ r & 66(3.9) \end{array}$	r $57(4.9)$ $89(2.3)$ $98(1.2)$ $78(3.5)$ r $40(4.3)$	$\begin{array}{ll} r & 61(4.6) \\ & 87(2.8) \\ & 50(4.4) \\ & 95(1.8) \\ r & 76(3.3) \end{array}$
Italy Japan Jordan Korea, Rep. of Latvia (LSS)	99 (0.9) 97 (1.7) 96 (2.0) 91 (2.2) 49 (4.4)	99 (0.9) 96 (1.8) 98 (1.1) 92 (2.2) 46 (4.3)	$\begin{array}{ll} 97 & (0.9) \\ 82 & (3.3) \\ 90 & (2.9) \\ 87 & (2.8) \\ 67 & (4.2) \end{array}$	$\begin{array}{r} 100(0.0) \\ 86(3.0) \\ 87(3.3) \\ 76(3.7) \\ 98(1.3) \end{array}$	$89(2.4)$ $r \quad 15(3.2)$ $82(3.8)$ $57(4.3)$ $90(2.9)$	$\begin{array}{r} 87(2.9) \\ 8(2.5) \\ 61(5.1) \\ 54(4.3) \\ 49(4.8) \end{array}$
Lithuania ${ }^{\ddagger}$ Macedonia, Rep. of Malaysia Moldova Morocco	$\begin{gathered} -- \\ 99(0.8) \\ 96(1.8) \\ -- \\ -- \end{gathered}$	$\begin{gathered} 99(1.0) \\ 93(2.1) \\ -- \\ -- \end{gathered}$	$\begin{gathered} -- \\ 98(1.1) \\ 96(1.7) \\ -- \\ -- \end{gathered}$	$\begin{gathered} 96(1.6) \\ 75(4.0) \\ -- \\ -- \end{gathered}$	$\begin{gathered} 90(2.7) \\ 88(2.8) \\ -- \\ -- \end{gathered}$	$\begin{gathered} -- \\ 90(2.7) \\ 15(2.9) \\ -- \end{gathered}$
Netherlands New Zealand Philippines Romania Russian Federation	r $\quad 100(0.0)$	$100(0.0)$ $55(4.4)$ $61(4.1)$ $99(0.6)$ 	 r $100(0.0)$ $55(4.2)$ $65(4.4)$ $98(1.3)$ -	r $\quad 100(0.0)$ $85(3.0)$ $63(3.9)$ (1.2)	$100(0.0)$ $65(4.2)$ $83(2.7)$ $96(1.9)$	 r $99(0.9)$ $28(3.3)$ $44(4.4)$ $96(1.6)$ --
Singapore South Africa Thailand Tunisia Turkey United States	$97(1.5)$ $r \quad 43(5.4)$ $93(2.3)$ $53(4.1)$ $93(2.9)$ $r \quad 90(2.6)$		$97(1.8)$ s $\quad 49(5.3)$ $87(2.7)$ $51(4.3)$ $86(3.4)$ r $\quad 91(2.2)$	$\begin{array}{ll} \mathrm{r} & 86(3.8) \\ \mathrm{r} & 80(4.1) \\ & 79(3.2) \\ & 92(2.4) \\ & 92(2.0) \\ & 92(1.9) \end{array}$	r $69(4.4)$ r $85(3.0)$ $83(3.5)$ $58(4.1)$ $96(1.4)$ r $90(2.0)$	$92(2.7)$ $r \quad 49(5.6)$ $91(2.8)$ $24(3.4)$ $63(3.9)$ $r \quad 83(2.8)$
International Avg.	84 (0.5)	83 (0.5)	79 (0.6)	87 (0.5)	77 (0.6)	61 (0.7)

[^6][^7]

Background data provided by teachers.

* Taught before or during this school year.
\ddagger Lithuania tested the same cohort of students as other countries, but later in 1999, at the beginning of the next school year.

Science teacher background data for Slovak Republic and Slovenia are unavailable.
() Standard errors appear in parentheses. Because results are rounded to the nearest whole number, some totals may appear inconsistent.
A dash (-) indicates data are not available.
An "r" indicates teacher response data available for 70-84\% of students. An " s " indicates teacher response data available for $50-69 \%$ of students.

	Classification of matter (elements, compounds, solutions, mixtures)	Structure of matter (atoms, ions, molecules, crystals)	Chemical reactivity and transformations (definition of chemical change, oxidation, combustion)	Energy and chemical change (exothermic and endothermic reactions, reaction rates)
Australia	98 (1.1)	89 (2.6)	65 (4.1)	42 (3.8)
Belgium (Flemish)	S 13 (2.9)	8 (2.6)	8 (3.0)	4 (1.9)
Bulgaria	99 (0.8)	99 (1.1)	99 (0.5)	87 (2.8)
Canada	$r \quad 80$ (2.3)	s 63 (3.1)	54 (4.2)	s 36 (3.6)
Chile	95 (1.8)	90 (2.1)	86 (3.0)	83 (3.2)
Chinese Taipei	100 (0.0)	97 (1.4)	100 (0.0)	84 (2.9)
Cyprus	95 (1.7)	r 80 (4.2)	68 (4.4)	$r \quad 53$ (4.9)
Czech Republic	100 (0.0)	100 (0.0)	92 (3.0)	53 (5.3)
England	98 (1.7)	84 (4.1)	94 (2.1)	s 73 (4.7)
Finland	95 (1.7)	89 (2.6)	79 (2.7)	51 (3.6)
Hong Kong, SAR	90 (2.7)	66 (4.6)	57 (5.0)	71 (4.8)
Hungary	100 (0.0)	100 (0.0)	97 (1.4)	99 (1.0)
Indonesia	$\mathrm{x} \times$	$\mathrm{x} \times$	$\mathrm{x} \times$	$\mathrm{x} \times$
Iran, Islamic Rep.	100 (0.0)	97 (1.6)	97 (1.1)	66 (4.8)
Israel	95 (2.1)	94 (2.2)	62 (4.1)	29 (4.0)
Italy	95 (1.8)	91 (2.0)	78 (3.6)	58 (4.0)
Japan	99 (1.2)	75 (3.6)	96 (1.7)	46 (4.2)
Jordan	99 (0.6)	99 (0.9)	98 (1.1)	62 (4.5)
Korea, Rep. of	99 (0.8)	97 (1.4)	91 (2.3)	51 (3.8)
Latvia (LSS)	99 (0.9)	99 (0.9)	89 (2.6)	54 (4.8)
Lithuania ${ }^{ \pm}$	-	- -	- -	- -
Macedonia, Rep. of	98 (1.0)	99 (0.9)	99 (0.7)	87 (3.0)
Malaysia	82 (3.2)	71 (3.7)	57 (4.4)	39 (4.3)
Moldova	- -	- -	- -	--
Morocco	- -	- -	- -	- -
Netherlands	99 (1.0)	99 (0.9)	99 (0.9)	99 (0.8)
New Zealand	96 (1.5)	89 (2.6)	61 (4.1)	35 (3.6)
Philippines	92 (2.2)	87 (2.7)	83 (3.2)	72 (3.8)
Romania	100 (0.0)	99 (0.7)	84 (4.0)	36 (4.9)
Russian Federation	- -	- -	- -	- -
Singapore	98 (1.3)	93 (2.5)	89 (2.9)	$\mathrm{x} \times$
South Africa	96 (1.8)	72 (3.5)	65 (4.0)	43 (4.5)
Thailand	86 (3.6)	86 (3.5)	51 (4.8)	52 (4.3)
Tunisia	9 (3.1)	1 (0.9)	3 (1.8)	$\mathrm{s} \quad 1$ (1.1)
Turkey	97 (1.5)	96 (1.9)	94 (2.1)	95 (1.8)
United States	88 (2.2)	88 (2.6)	76 (3.4)	66 (3.9)
International Avg.	90 (0.3)	84 (0.4)	76 (0.6)	58 (0.7)

[^8]() Standard errors appear in parentheses. Because results are rounded to the nearest whole number, some totals may appear inconsistent.
A dash (-) indicates data are not available.
An " r " indicates teacher response data available for $70-84 \%$ of students. An " s " indicates teacher response data available for $50-69 \%$ of students. An " x " indicates teacher response data available for $<50 \%$ of students.

Exhibit 5.16 Percentages of Students Taught Environmental and Resource Issues Topics*

	Pollution (acid rain, global warming, ozone layer, water pollution)		Conservation of natural resources (land, water forests, energy sources)		Food supply and production, population, and environmental effects of natural and man-made events	
Australia	r	62 (3.6)	r	45 (3.9)	r	40 (3.6)
Belgium (Flemish)	r	89 (3.3)	r	82 (3.7)	r	63 (4.3)
Bulgaria	s	92 (2.9)	S	89 (3.3)	s	84 (4.0)
Canada	s	92 (1.4)	s	90 (2.2)	s	83 (2.9)
Chile		97 (1.3)		97 (1.3)		90 (2.3)
Chinese Taipei	r	73 (3.5)	r	48 (4.4)	r	41 (4.7)
Cyprus	s	93 (3.2)	s	89 (3.7)	s	50 (5.0)
Czech Republic		92 (2.6)		92 (2.5)		82 (4.1)
England	s	79 (4.5)	s	71 (5.1)	s	71 (4.6)
Finland		78 (3.2)		77 (4.0)		55 (4.2)
Hong Kong, SAR		74 (4.3)	r	54 (5.3)	r	30 (4.7)
Hungary		99 (1.0)		99 (1.0)		89 (2.8)
Indonesia		79 (4.0)		85 (3.0)		79 (3.8)
Iran, Islamic Rep.		39 (4.3)		88 (2.9)		69 (3.8)
Israel	r	44 (4.8)	5	37 (4.5)	r	35 (4.4)
Italy		84 (2.6)		80 (2.8)		70 (3.4)
Japan		26 (3.4)		7 (2.4)		7 (2.4)
Jordan		87 (2.9)		81 (3.6)	r	72 (4.4)
Korea, Rep. of		75 (3.8)		58 (4.5)		49 (4.4)
Latvia (LSS)	r	88 (3.4)	r	87 (3.3)	r	75 (4.4)
Lithuania ${ }^{\ddagger}$						--
Macedonia, Rep. of	r	86 (3.1)	r	89 (2.7)	r	84 (3.5)
Malaysia		82 (3.5)		75 (3.7)		77 (3.9)
Moldova		- -		-		-
Morocco		--		--		--
Netherlands		99 (1.0)		98 (1.0)	r	98 (1.1)
New Zealand		60 (3.9)		61 (4.0)	r	40 (4.1)
Philippines		95 (1.9)		97 (1.4)		90 (2.3)
Romania		94 (2.5)		94 (2.3)		96 (2.2)
Russian Federation		- -		- -		- -
Singapore		93 (2.4)	r	86 (3.5)	s	64 (5.0)
South Africa	s	60 (4.2)	s	66 (4.6)	s	59 (4.9)
Thailand		83 (3.4)		92 (2.3)		89 (2.3)
Tunisia	r	37 (4.2)	r	52 (4.7)	r	42 (4.8)
Turkey		87 (3.3)		84 (3.4)		74 (3.5)
United States	r	83 (2.4)	r	79 (2.5)	s	81 (2.9)
International Avg.		78 (0.6)		76 (0.6)		66 (0.7)

Background data provided by teachers.

* Taught before or during this school year.
\ddagger Lithuania tested the same cohort of students as other countries, but later in 1999, at the beginning of the next school year.

Science teacher background data for Slovak Republic and Slovenia are unavailable.
() Standard errors appear in parentheses. Because results are rounded to the nearest whole number some totals may appear inconsistent

A dash (-) indicates data are not available.
An "r" indicates teacher response data available for $70-84 \%$ of students. An "s" indicates teacher response data available for $50-69 \%$ of students.

Exhibit 5.17 Percentages of Students Taught Scientific Inquiry and the Nature of Science Topics*

Science

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& Scientific method (formulating hypotheses, making observations, drawing conclusions, generalizing) \& Experimental design (experimental control, materials, and procedures) \& \[
\begin{aligned}
\& \text { Scientific } \\
\& \text { measurements } \\
\& \text { (reliability, } \\
\& \text { replication, } \\
\& \text { experimental } \\
\& \text { error, accuracy, } \\
\& \text { scales) }
\end{aligned}
\] \& Using scientific apparatus and conducting routine experimental operations \& Gathering, organizing, and representing data (units, tables, charts, graphs) \& Describing and interpreting data \\
\hline Australia Belgium (Flemish) Bulgaria Canada Chile \& \& \[
\begin{array}{cc}
r \& 95(1.2) \\
r \& 46(4.6) \\
\& \times x \\
r \& 97(1.7) \\
\& 86(3.1)
\end{array}
\] \& \[
\begin{array}{cc}
\mathrm{r} \& 78(3.5) \\
\mathrm{r} \& 64(4.6) \\
\& \mathrm{x} \mathrm{x} \\
\mathrm{~s} \& 84(2.8) \\
\mathrm{r} \& 71(3.6)
\end{array}
\] \& \begin{tabular}{cc}
\& \(98(1.2)\) \\
\(r\) \& \(66(4.9)\) \\
\& x x \\
r \& \(99(0.8)\) \\
\& \(78(3.2)\)
\end{tabular} \& \[
\begin{array}{cc}
\& 99(0.5) \\
r \& 91(2.8) \\
\& \mathrm{x} x \\
\mathrm{r} \& 100(0.2) \\
\& 93(2.0)
\end{array}
\] \& \[
\begin{array}{cc}
\& 96(2.0) \\
r \& 90(3.2) \\
\& \mathrm{x} \mathrm{x} \\
\mathrm{r} \& 99(0.7) \\
\& 91(1.9)
\end{array}
\] \\
\hline Chinese Taipei Cyprus Czech Republic England Finland \& \begin{tabular}{rr}
\& \(85(3.2)\) \\
\(r\) \& \(100(0.0)\) \\
\(r\) \& \(79(4.4)\) \\
s \& \(96(1.6)\) \\
\& \(89(2.8)\)
\end{tabular} \& \begin{tabular}{rr}
\& \(71(4.0)\) \\
\(r\) \& \(93(3.0)\) \\
\(r\) \& \(73(4.9)\) \\
s \& \(95(1.9)\) \\
\& \(89(2.5)\)
\end{tabular} \& \begin{tabular}{ll}
\& \(83(3.3)\) \\
\(r\) \& \(85(3.5)\) \\
\(r\) \& \(81(4.4)\) \\
s \& \(92(2.2)\) \\
\& \(82(2.9)\)
\end{tabular} \& \begin{tabular}{ll}
\& \(90(2.7)\) \\
\& \(93(2.5)\) \\
\(r\) \& \(80(4.8)\) \\
\(r\) \& \(98(0.9)\) \\
s \& \begin{tabular}{l}
(2.
\end{tabular} \\
\& \(84(2.7)\)
\end{tabular} \& \[
\begin{array}{ll}
\& 68(4.0) \\
s \& 88(3.0) \\
r \& 86(3.7) \\
\mathrm{s} \& 98(0.8) \\
\& 90(2.6)
\end{array}
\] \& \begin{tabular}{ll}
\& \(69(3.9)\) \\
\& \(92(2.3)\) \\
\(r\) \& \(81(4.8)\) \\
\(r\) \& \(98(0.9)\) \\
\& \(92(2.2)\)
\end{tabular} \\
\hline Hong Kong, SAR Hungary Indonesia Iran, Islamic Rep. Israel \& \begin{tabular}{r}
\(85(3.4)\) \\
\\
\(96(1.7)\) \\
\\
\(90(2.8)\) \\
\(r\) \\
\(r \quad 64(4.3)\) \\
\(r\) \\
\hline
\end{tabular} \& \begin{tabular}{l}
68 (4.5) \\
93 (1.9) \\
63 (4.1) \\
77 (3.5) \\
91 (2.7)
\end{tabular} \& \begin{tabular}{rr}
\& \(63(4.8)\) \\
\& \(80(3.5)\) \\
\& \(67(4.6)\) \\
\(r\) \& \(54(4.5)\) \\
\(r\) \& \(55(4.6)\)
\end{tabular} \& \(88(3.1)\)
\(77(3.7)\)
\(78(4.2)\)
\(83(3.3)\)
\(r \quad 84(3.5)\) \& \begin{tabular}{rr}
\& \(81(3.4)\) \\
\& \(97(1.7)\) \\
\& \(80(3.8)\) \\
\(r\) \& \(57(4.4)\) \\
\& \(82(3.7)\)
\end{tabular} \& \begin{tabular}{rr}
\(r\) \& \(80(3.3)\) \\
\& \(99(0.7)\) \\
\& \(71(4.0)\) \\
\(r\) \& \(60(4.1)\) \\
\& \(88(3.0)\)
\end{tabular} \\
\hline Italy Japan Jordan Korea, Rep. of Latvia (LSS) \& \(100(0.0)\)
\(90(2.6)\)
\(r \quad 58(4.7)\)
\(r \quad 93(2.1)\)
\(r\)
\(82(3.8)\) \& \(94(1.8)\)
\(96(1.8)\)
\(r \quad 55(4.8)\)
\(r \quad 89(2.6)\)
\(95(2.1)\) \& \(84(3.1)\)

$77(3.4)$
r
$53(5.0)$
$r \quad 84(3.1)$
$61(5.3)$ \& $84(3.2)$
$99(1.0)$
$83(3.2)$
$99(0.7)$
$r \quad 82(3.9)$ \& $95(1.7)$

$97(1.6)$
$r \quad 78(4.0)$
$r \quad 92(2.1)$
$92(2.9)$ \& $94(1.8)$
$95(1.9)$
$75(4.2)$
$r \quad 86(2.9)$
$91(2.8)$

\hline | Lithuania ${ }^{\ddagger}$ |
| :--- |
| Macedonia, Rep. of |
| Malaysia |
| Moldova |
| Morocco | \& | 87 (3.9) |
| :--- |
| 87 (3.2) |
| - - |
| - - | \& \[

$$
\begin{gathered}
-- \\
\text { x x } \\
76(4.2) \\
-- \\
--
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
-- \\
\text { x x } \\
68(4.0) \\
--
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
-- \\
\text { x x } \\
95(2.3) \\
-- \\
--
\end{gathered}
$$

\] \& \[

$$
\begin{array}{cc}
& -- \\
\text { s } & 84(4.8) \\
& 83(3.3) \\
& -- \\
& --
\end{array}
$$

\] \& | 85 (4.7) |
| :--- |
| 83 (3.4) |
| - - |

\hline Netherlands
New Zealand
Philippines
Romania

Russian Federation \& \begin{tabular}{r}
$92(3.7)$

$99(0.8)$

$100(0.4)$

$r \quad 94(2.5)$

\hline

 \&

$96(3.0)$

$96(1.7)$

$96(1.7)$

$r \quad 92(3.0)$

\hline

 \&

$99(0.7)$

$85(3.3)$

$87(2.9)$

r $\quad 90(3.0)$

\& $-\quad-$

\end{tabular} \& \[

$$
\begin{array}{r}
100(0.0) \\
97(1.8) \\
90(2.7) \\
94(2.3) \\
--
\end{array}
$$

\] \& | $100(0.0)$ |
| ---: |
| $99(0.6)$ |
| $97(1.4)$ |
| $r \quad 95(2.2)$ |
| |
| |
| |
| | \& $100(0.0)$

$99(1.0)$
$98(1.1)$
$r \quad$
$96(2.1)$

\hline Singapore South Africa Thailand Tunisia Turkey United States \& | | $94(2.2)$ |
| :--- | :--- |
| r | $66(4.1)$ |
| | $90(2.2)$ |
| r | $85(3.4)$ |
| r | $58(4.3)$ |
| r | $99(0.6)$ | \& | r | $93(2.6)$ |
| :--- | :--- |
| r | $65(4.1)$ |
| | $89(2.4)$ |
| r | $84(3.5)$ |
| r | $76(3.4)$ |
| r | $97(1.2)$ | \& | r | $91(3.0)$ |
| :--- | :--- |
| r | $53(4.8)$ |
| | $76(4.0)$ |
| r | $47(5.2)$ |
| r | $55(4.0)$ |
| r | $89(2.5)$ | \& | | $97(1.7)$ |
| :--- | :--- |
| r | $73(4.2)$ |
| | $93(2.0)$ |
| r | $73(4.1)$ |
| r | $65(4.4)$ |
| r | $95(1.4)$ | \& | | $95(2.1)$ |
| :--- | :--- |
| r | $68(4.8)$ |
| | $87(3.1)$ |
| r | $70(3.8)$ |
| r | $67(4.6)$ |
| r | $97(1.4)$ | \& | | $96(1.9)$ |
| :--- | :--- |
| r | $69(3.9)$ |
| | $82(3.2)$ |
| | $79(3.7)$ |
| r | $59(4.7)$ |
| r | $98(1.1)$ |

\hline International Avg. \& 88 (0.5) \& 84 (0.6) \& 75 (0.7) \& 87 (0.5) \& 87 (0.5) \& 87 (0.5)

\hline
\end{tabular}

Background data provided by teachers.

* Taught before or during this school year.
\ddagger Lithuania tested the same cohort of students as other countries, but later in 1999, at the beginning of the next school year.

Science teacher background data for Slovak Republic and Slovenia are unavailable.

[^9]
Can Meaningful Comparisons Between Intended and Implemented Curricula Be Made?

The timss 1999 results indicate some discrepancies in a number of countries between the intended curriculum in science and the implemented curriculum as reported by teachers. There are many cases of topics intended to be taught to all, or almost all, students in a country for which teachers reported lower coverage. Interestingly, there are even more cases for which teachers reported greater topic coverage than would be expected from the intended curriculum. Such discrepancies are consistent with previous iea studies. ${ }^{2}$ However, considering the broad nature of the topic areas, care should be taken in interpreting the results. Further analysis will need to be done within each country to strengthen the match between the intended and implemented curricula.

[^10]

[^0]: Background data provided by National Research Coordinators.
 1 Australia: Yes in 4 of 8 states/territories.
 2 Canada: Results shown are for the majority of provinces.
 3 Geography is considered to be an integrated social studies and natural science course at grade 8; geography teachers were not sampled in the TIMSS studies.

[^1]: Background data provided by National Research Coordinators.

 * Other than public examinations and system-wide assessments described in Exhibits 5.4 and 5.5, respectively.

 1 Australia: Results are shown for the majority of states/territories.

[^2]: Background data provided by National Research Coordinators.
 2 Australia: System-wide assessments are administered in 3 of 8 states/territories.
 1 Public examinations are also used for system-wide assessment purposes in these countries: Malaysia,
 Morocco, Netherlands, Philippines, Singapore, Tunisia, and Turkey

[^3]: 1 Mullis, I.V.S., Martin, M.O., Gonzalez, E.J., Gregory, K.D., Garden, R.A., O'Connor, K.M., Chrostowski, S.J., and Smith, T.A. (2000), TIMSS 1999 International Mathematics Report: Findings from IEA's Repeat of the Third International Mathematics and Science Study at the Eighth Grade, Chestnut Hill, MA: Boston College.

[^4]: () Standard errors appear in parentheses. Because results are rounded to the nearest whole number, some totals may appear inconsistent.

[^5]: Background data provided by teachers.

 * Taught before or during this school year.
 \ddagger Lithuania tested the same cohort of students as other countries, but later in 1999, at the beginning of the next school year

 1 Data for grade 9 earth science teachers not available.
 Science teacher background data for Slovak Republic and Slovenia are unavailable.

[^6]: Background data provided by teachers.

 * Taught before or during this school year
 \ddagger Lithuania tested the same cohort of students as other countries, but later in 1999, at the beginning of the next school year

 1 Data for grade 7 biology teachers not available.
 Science teacher background data for Slovak Republic and Slovenia are unavailable

[^7]: () Standard errors appear in parentheses. Because results are rounded to the nearest whole number some totals may appear inconsistent.
 A dash (-) indicates data are not available.
 An " r " indicates teacher response data available for $70-84 \%$ of students. An " s " indicates teacher response data available for $50-69 \%$ of students.

[^8]: Background data provided by teachers.

 * Taught before or during this school year
 \ddagger Lithuania tested the same cohort of students as other countries, but later in 1999, at the beginning of the next school year.

 Science teacher background data for Slovak Republic and Slovenia are unavailable.

[^9]: () Standard errors appear in parentheses. Because results are rounded to the nearest whole number some totals may appear inconsistent.
 A dash (-) indicates data are not available.
 An " r " indicates teacher response data available for $70-84 \%$ of students. An " s " indicates teacher response data available for $50-69 \%$ of students. An "x" indicates teacher response data available for $<50 \%$ of students.

[^10]: 2 Livingstone, I.D., (1986), Second International Mathematics Study: Perceptions of the Intended and Implemented Mathematics Curriculum, Washington, D.C., Center for Statistics, U.S. Department of Education

